1887

Abstract

Human immunodeficiency virus type 1 (HIV-1) replication is restricted partially in SK-N-MC and completely in SK-N-SH neuronal cells. To investigate the molecular mechanism of this differential restriction of HIV-1 replication, cells infected with HIV-1 were analysed for their steady-state levels of: total and unintegrated HIV-1 DNA by DNA PCR, different species of HIV-1 RNA by RT-PCR, and HIV-1 p24 protein production by an ELISA procedure. We found that the kinetics of the infection were slower and there was a lower level of accumulation of HIV- 1 macromolecules (total and unintegrated circular DNA, unspliced and spliced RNAs and viral proteins) in the SK-N-MC cells than in the permissive CEM cells. In SK-N-SH cells, HIV-1 DNA was only transiently detected during the first 24 h post-infection, and the unspliced RNA was detected up to 1 week post-infection. However, the HIV-1 spliced RNAs and the 2-LTR circular DNA were not detected at all during the course of infection. Both SK-N-MC and SK-N-SH cells showed higher levels of HIV-1 DNA, RNA and p24 protein when infected with an HIV-1 (amphotropic retrovirus) pseudotype, HIV-1B. However, the level of HIV-1 replication was still lower in SK-N-SH than in SK-N-MC cells. Moreover, although the kinetics of viral protein production were comparable in SK-N-MC cells infected with HIV-1B and CEM cells infected with HIV-1, the overall level of virus replication was still much lower in HIV-1B- infected SK-N-MC cells. These data suggest that the restriction of HIV-1 replication in neuronal cell lines takes place at both virus-entry and post-entry levels, and cellular factors may be involved in the differential restriction of HIV-1 replication in these cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-12-3255
1997-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/12/9400976.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-12-3255&mimeType=html&fmt=ahah

References

  1. Besansky N. J., Butera S. T., Sinha S., Folks T. M. 1991; Unintegrated human immunodeficiency virus type 1 DNA in chronically infected cell lines is not correlated with surface CD4. expression. Journal of Virology 65:2695–2698
    [Google Scholar]
  2. Bruggeman L. A., Thomson M. M., Nelson P. J., Kopp J. B., Rappaport J., Klotman P. E., Klotman M. E. 1994; Patterns of HIV-1 mRNA expression in transgenic mice are tissue-dependent. Virology 202:940–948
    [Google Scholar]
  3. Bukrinsky M. I., Sharova N., Dempsey M. P., Stanwick T. L., Bukrinskaya A. G., Haggerty S., Stevenson M. 1992; Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proceedings of the National Academy of Sciences, USA 89:6580–6584
    [Google Scholar]
  4. Chesebro B., Wehrly K., Maury W. 1990; Differential expression in human and mouse cells of human immunodeficiency virus pseudotyped by murine retroviruses. Journal of Virology 64:4553–4557
    [Google Scholar]
  5. Cohen E. A., Terwilliger E. F., Sodroski J. G., Haseltine W. A. 1988; Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:532–534
    [Google Scholar]
  6. Dickover R. E., Donovan R. M., Goldstein E., Cohen S. H., Bolton V., Huth R., Liu G., Carlson J. R. 1992; Decreases in unintegrated HIV DNA are associated with antiretroviral therapy in AIDS patients. Journal of Acquired Immune Deficiency Syndromes 5:31–36
    [Google Scholar]
  7. Fernandez-Larsson R., Srivastava K. K., Lu S., Robinson H. L. 1992; Replication of patient isolates of human immunodeficiency virus type 1 in T cells: a spectrum of rates and efficiencies of entry. Proceedings of the National Academy of Sciences, USA 89:2223–2226
    [Google Scholar]
  8. Gabuzda D. H., Ho D. D., de la Monte S. M., Hirsch M. S., Rota T. R., Sobel R. A. 1986; Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Annals of Neurology 20:289–295
    [Google Scholar]
  9. Harouse J. M., Gonzalez-Scarano F. 1996; Infection of SK-N-MC cells, a CD4-negative neuroblastoma cell line, with primary human immunodeficiency virus type 1 isolates. Journal of Virology 70:7290–7294
    [Google Scholar]
  10. Harouse J. M., Kunsch C., Hartle H. T., Laughlin M. A., Hoxie J. A., Wigdahl B., Gonzalez-Scarano F. 1989; CD4-independent infection of human neural cells by human immunodeficiency virus type 1. Journal of Virology 63:2527–2533
    [Google Scholar]
  11. Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. 1991; Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253:320–323
    [Google Scholar]
  12. Hsia K., Spector S. A. 1991; Human immunodeficiency virus DNA is present in a high percentage of CD4+ lymphocytes of seropositive individuals. Journal of Infectious Diseases 164:470–475
    [Google Scholar]
  13. Jault F. M., Spector S. A., Spector D. 1994; The effects of cytomegalovirus on human immunodeficiency virus replication in brain-derived cells correlate with permissiveness of the cells for each virus. Journal of Virology 68:959–973
    [Google Scholar]
  14. Koenig S., Gendelman H. E., Orenstein J. M., Dalcanto M. C., Pezeshkpour G., Yungbluth M., Janotta F., Aksamit A., Martin M. A., Fauci A. S. 1986; Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093
    [Google Scholar]
  15. Landau N. R., Page K. A., Littman D. R. 1991; Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. Journal of Virology 65:162–169
    [Google Scholar]
  16. Li X. L., Moudgil T., Vinters H. V., Ho D. D. 1990; CD4-independent, productive infection of a neuronal cell line by human immunodeficiency virus type 1. Journal of Virology 64:1383–1387
    [Google Scholar]
  17. Lusso P., Veronese F. D., Ensoli B., Franchini G., Jemma C., DeRocco S. E., Kalyanaraman V. S., Gallo R. C. 1990; Expanded HIV-1 cellular tropism by phenotypic mixing with murine endogenous retroviruses. Science 247:848–852
    [Google Scholar]
  18. Nuovo G. J., Gallery F., MacConnell P., Braun A. 1994; In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-α RNA in the central nervous system. American Journal of Pathology 144:659–666
    [Google Scholar]
  19. Ou C. Y., Kwok S., Mitchell S. W., Mack D. H., Sninsky J. J., Krebs J. W., Feorino P., Warfield D., Schochetman G. 1988; DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239:295–297
    [Google Scholar]
  20. Pang S., Koyanagi Y., Miles S., Wiley C., Vinters H. V., Chen I. S. Y. 1990; High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343:85–89
    [Google Scholar]
  21. Pauza C. D., Galindo J. E., Richman D. D. 1990; Reinfection results in accumulation of unintegrated viral DNA in cytopathic and persistent human immunodeficiency virus type 1 infection of CEM cells. Journal of Experimental Medicine 172:1035–1042
    [Google Scholar]
  22. Price R. W., Brew B., Sidtis J., Rosenblum M., Scheck A. C., Cleary P. 1988; The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239:586–592
    [Google Scholar]
  23. Pumarola-Sune T., Navia B. A., Cordon-Cardo C., Cho E.-S., Price R. W. 1987; HIV antigen in the brains of patients with the AIDS dementia complex. Annals of Neurology 21:490–496
    [Google Scholar]
  24. Saksela K., Muchmore E., Girard M., Fultz P., Baltimore D. 1993; High viral load in lymph nodes and latent human immunodeficiency virus (HIV) in peripheral blood cells of HIV-1-infected chimpanzees. Journal of Virology 67:7423–7427
    [Google Scholar]
  25. Saksela K., Stevens C., Rubinstein P., Baltimore D. 1994; Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4+ lymphocytes. Proceedings of the National Academy of Sciences, USA 91:1104–1108
    [Google Scholar]
  26. Seshamma T., Bagasra O., Oakes J. W., Pomerantz R. J. 1992; A quantitative reverse transcriptase-polymerase chain reaction for HIV-1-specific RNA species. Journal of Virological Methods 40:331–346
    [Google Scholar]
  27. Shapshak P., Sun N. C. J., Resnick L., Thornthwaite J. T., Schiller P., Yoshioka M., Svenningsson A., Tourtellotte W. W., Imagawa D. T. 1991; HIV-1 propagates in human neuroblastoma cells. Journal of Acquired Immune Deficiency Syndromes 4:228–237
    [Google Scholar]
  28. Sharpless N., Gilbert D., Vandercam B., Zhou J. M., Verdin E., Ronnett G., Friedman E., Dubois-Dalcq M. 1992; The restricted nature of HIV-1 tropism for cultured neural cells. Virology 191:813–825
    [Google Scholar]
  29. Simpson D. M., Tagliati M. 1994; Neurologic manifestations of HIV infection. Annals of Internal Medicine 121:769–785
    [Google Scholar]
  30. Spector D. H., Wade E., Wright D. A., Koval V., Clark C., Jaquish D., Spector S. A. 1990; Human immunodeficiency virus pseudotypes with expanded cellular and species tropism. Journal of Virology 64:2298–2308
    [Google Scholar]
  31. Spencer D. C., Price R. W. 1992; Human immunodeficiency virus and the central nervous system. Annual Review of Microbiology 46:655–693
    [Google Scholar]
  32. Srivastava K. K., Fernandez-Larsson R., Zinkus D. M., Robinson H. L. 1991; Human immunodeficiency virus type 1 NL4-3 replication in four T-cell lines: rate and efficiency of entry, a major determinant of permissiveness. Journal of Virology 65:3900–3902
    [Google Scholar]
  33. Stefano K. A., Collman R., Kolson D., Hoxie J., Nathanson N., Gonzalez-Scarano F. 1993; Replication of a macrophage-tropic strain of human immunodeficiency virus type 1 (HIV-1) in a hybrid cell line, CEMx174, suggests that cellular accessory molecules are required for HIV-1 entry. Journal of Virology 67:6707–6715
    [Google Scholar]
  34. Strebel K., Klimbait T., Martin M. A. 1988; A novel gene of HIV-I, vpu, and its 16-kilodalton product. Science 241:1221–1223
    [Google Scholar]
  35. Strebel K., Klimbait T., Maldarelli F., Martin M. S. 1989; Molecular and biochemical analyses of human immunodeficiency virus type 1 Vpu protein. Journal of Virology 63:3784–3791
    [Google Scholar]
  36. Subbramanian R. A., Cohen E. A. 1994; Molecular biology of the human immunodeficiency virus accessory proteins. Journal of Virology 68:6831–6835
    [Google Scholar]
  37. Terwilliger E. F. 1993; The accessory gene functions of the primate immunodeficiency viruses. AIDS Research Reviews 2:3–27
    [Google Scholar]
  38. Terwilliger E. F., Cohen E. A., Lu Y. C., Sodroski J. G., Haseltine W. A. 1989; Functional role of human immunodeficiency virus type 1 vpu. Proceedings of the National Academy of Sciences, USA 86:5163–5167
    [Google Scholar]
  39. Truckenmiller M. E., Kulaga H., Coggiano M., Wyatt R., Snyder S. H., Sweetnam P. M. 1993; Human cortical neuronal cell line : a model for HIV-1 infection in an immature neuronal system. AIDS Research and Human Retroviruses 5:445–453
    [Google Scholar]
  40. Varmus H. E., Swanstrom R. 1985; Replication of retroviruses. In RNA Tumour Viruses pp. 369–512 Weiss R., Teich N., Varmus H., Coffin J. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Vincent M. J., Jabbar M. A. 1995; The human immunodeficiency virus type 1 Vpu protein: a potential regulator of proteolysis and protein transport in the mammalian secretory pathway. Virology 213:639–649
    [Google Scholar]
  42. Vesanen M., Linna T., Vaheri A. 1991; Persistent inapparent HIV-1 infection of human neuroblastoma cells. Archives of Virology 120:253–261
    [Google Scholar]
  43. Weiner D. B., Huebner K., Williams W. V., Greene M. I. 1991; Human genes other than CD4 facilitate HIV-1 infection of murine cells. Pathobiology 59:361–371
    [Google Scholar]
  44. Wiley C. A., Schrier R. D., Nelson J. A., Lampert P. W., Oldstone M. B. 1986; Cellular localization of human immunodeficiency virus infection within the brains of acquired immunodeficiency syndrome patients. Proceedings of the National Academy of Sciences, USA 83:7089–7093
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-12-3255
Loading
/content/journal/jgv/10.1099/0022-1317-78-12-3255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error