1887

Abstract

Putative baculovirus helicases have been implicated as playing an important role in viral DNA replication and host specificity. The multicapsid nucleopolyhedrovirus (SeMNPV) helicase is therefore of interest since the virus only infects the beet army worm. Sequence analysis of the SeMNPV (mu 46·5–55·1) region, which is collinear with the area in MNPV (AcMNPV), revealed an open reading frame (ORF) of 3666 bp potentially encoding a protein with a molecular mass of 143 kDa. This protein had considerable amino acid sequence similarity (58%) to AcMNPV p143, including seven conserved motifs characteristic of helicases. In cultured insect cells, this SeMNPV ORF is expressed from 4 to 12 h postinfection and its major transcript of 4 kb starts 11 to 12 nt upstream of the putative translational initiation site (ATG). To study their possible role in the specificity of baculovirus DNA replication, the putative AcMNPV and SeMNPV helicase genes were tested for their ability to replicate homologous regions (hrs; putative origins of DNA replication) in a transient DNA replication assay in insect cells. All viral and trans-acting factors were provided as plasmids using either Achr2 or Sehr1 as the DNA replication origin. SeMNPV p143 could not substitute for AcMNPV p143 in the transient assays supplemented with either . Similar results were obtained when the SeMNPV and AcMNPV genes were exchanged. None of the essential AcMNPV -acting factors could be complemented by SeMNPV infections to support DNA replication of hrs. These data suggest a specific interaction between baculovirus DNA replication factors to form the replisome and/or between the replisome and the origin of DNA replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-12-3101
1997-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/12/9400958.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-12-3101&mimeType=html&fmt=ahah

References

  1. Abdel-Monem M., Dürwald H., Hoffmann-Berling H. 1976; Enzymatic unwinding of DNA: 2 chain separation by an ATP-dependent DNA unwinding enzyme. European Journal of Biochemistry 65:441–449
    [Google Scholar]
  2. Ahrens C. H., Rohrmann G. F. 1995a; Identification of essential trans-acting regions required for DNA replication of Orgyia pseudotsugata baculovirus DNA: lef1 is an essential gene. Virology 207:417–428
    [Google Scholar]
  3. Ahrens C. H., Rohrmann G. F. 1995b; Replication of Orgyia pseudotsugata baculovirus DNA: lef2 and ie1 are essential and ie2, p34 and Op-iap are stimulatory genes. Virology 212:650–662
    [Google Scholar]
  4. Ahrens C. H., Rohrmann G. F. 1996; The DNA polymerase and helicase genes of a baculovirus from Orgyia pseudotsugata. Journal of General Virology 77:825–837
    [Google Scholar]
  5. Ahrens C. H., Carlson C., Rohrmann G. F. 1995; Identification, sequence and transcriptional analysis of lef-3, a gene essential for Orgyia pseudotsugata baculovirus DNA replication. Virology 210:372–382
    [Google Scholar]
  6. Ayres M. D., Howard S. C., Kuzio J., Lopez-Ferber M., Possee R. D. 1994; The complete DNA sequence of Autographa californica nucleopolyhedrovirus. Virology 202:586–605
    [Google Scholar]
  7. Birnstiel M. L., Busslinger M., Strub K. 1985; . Transcription termination and 3ʹ processing: the end is in site! Cell 41:349–359
    [Google Scholar]
  8. Bruckner R. C., Crute J. J., Dodson M. S., Lehman I. R. 1991; The herpes simplex virus 1 origin binding protein: a DNA helicase. Journal of Biological Chemistry 266:2669–2674
    [Google Scholar]
  9. Chang M. J., Blissard G. W. 1996; Translational regulation by minicistrons in baculovirus mRNAs. Abstract Book of the 15th Annual Meeting of the American Society for Virology p 103
    [Google Scholar]
  10. Cowan P., Bulach D., Goodge K., Robertson A., Tribe D. E. 1994; Nucleotide sequence of the polyhedrin gene of Helicoverpa zea single nucleocapsid nuclear polyhedrosis virus : placement of the virus in lepidopteran nuclear polyhedrosis virus group II. Journal of General Virology 75:3211–3218
    [Google Scholar]
  11. Croizier G., Croizier L., Argaud O., Poudevigne D. 1994; Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proceedings of the National Academy of Sciences USA: 9148–52
    [Google Scholar]
  12. Crute J. J., Mocarski E. S., Lehman I. R. 1988; A DNA helicase induced by herpes simplex virus type 1. Nucleic Acids Research 16:6585–6596
    [Google Scholar]
  13. Crute J. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D. 1989; Herpes simplex virus 1 helicase-primase : a complex of three herpes- encoded gene products. Proceedings of the National Academy of Sciences USA: 862186–2189
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  15. Gelernter W. D., Federici B. A. 1986; Isolation, identification and determination of virulence of a nuclear polyhedrosis virus from the beet army worm, Spodoptera exigua. Environmental Entomology 15:240–245
    [Google Scholar]
  16. Goetz G. S., Dean F. B., Hurwitz J., Matson S. W. 1988; The unwinding of duplex regions in DNA by the simian virus large tumor antigen-associated DNA helicase activity. Journal of Biological Chemistry 263:383–392
    [Google Scholar]
  17. Gorbalenya A. E., Koonin E. V. 1989; One more conserved sequence motif in helicases. Nucleic Acids Research 16:7734
    [Google Scholar]
  18. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1988; A conserved NTP motif in putative helicases. Nature 333:22
    [Google Scholar]
  19. Gordon J. D., Carstens E. B. 1984; Phenotypic characterization and physical mapping of a temperature sensitive mutant of Autographa californica nuclear polyhedrosis virus defective in DNA synthesis. Virology 138:69–81
    [Google Scholar]
  20. Heldens J. G. M., Broer R., van Strien E. A., Oomen A. J. C., Möckel B., Kool M., Zuidema D., Goldbach R. W., Vlak J. M. 1995; Analysis of two putative origins of DNA replication in the genome of Spodoptera exigua NPV. Abstract Book of the 14th Annual Meeting of the American Society for Virology p 105
    [Google Scholar]
  21. Heldens J. G. M., van Strien E. A., Feldmann A. M., Kulcsar P., Muñoz D., Leisy D. J., Zuidema D., Goldbach R. W., Vlak J. M. 1996a; Spodoptera exigua multicapsid nucleopolyhedrovirus deletion mutants generated in cell culture lack virulence in vivo. Journal of General Virology 77:3127–3134
    [Google Scholar]
  22. Heldens J. G. M., Broer R., Liu Y., van Strien E. A., Zuidema D., Vlak J. M. 1996b; Specificity of the hr and non-hr origins of DNA replication of Spodoptera exigua and Autographa californica multicapsid nucleopolyhedrovirus. Abstract Book of the 15th Annual Meeting of the American Society for Virology p 104
    [Google Scholar]
  23. Heldens J. G. M., Broer R., Zuidema D., Goldbach R. W., Vlak J. M. 1997; Identification and functional analysis of a non-hr origin of DNA replication in the genome of Spodoptera exigua multicapsid nucleo- polyhedrovirus. Journal of General Virology 78:1497–1506
    [Google Scholar]
  24. Hink F. 1970; Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226:466–467
    [Google Scholar]
  25. Hodgman T. C. 1988; A new superfamily of replicative proteins [erratum 333, 578]. Nature 333:22–23
    [Google Scholar]
  26. Hoheisel J. D. 1989; A cassette with seven unique restriction sites, including octanucleotide sequences: extension of multiple-cloning-site plasmids. Gene 80:151–154
    [Google Scholar]
  27. Hu Z. H., Broer R., Westerlaken J., Martens J. W. M., Jin F., Jehle J. A., Wang L. M., Vlak J. M. 1997; Characterization of the ecdy- steroid UDP-glucosyltransferase gene of a single nucleocapsid nucleo- polyhedrosis virus of Buzura suppressaria. Virus Research 47:91–97
    [Google Scholar]
  28. King L. A., Possee R. D. 1992; The Baculovirus Expression System. London: Chapman and Hall;
    [Google Scholar]
  29. Kondo A., Maeda S. 1991; Host range expansion by recombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica nuclear polyhedrosis virus. Journal of Virology 65:3625–3632
    [Google Scholar]
  30. Kool M., Voeten J. T. M., Goldbach R. W., Tramper J., Vlak J. M. 1993; Identification of seven putative origins of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus DNA replication. Journal of General Virology 74:2661–2668
    [Google Scholar]
  31. Kool M., Voeten J. T. M., Goldbach R. W., Vlak J. M. 1994a; Functional mapping of regions involved of the Autographa californica nuclear polyhedrosis virus genome required for DNA replication. Virology 198:680–689
    [Google Scholar]
  32. Kool M., Ahrens C. H., Goldbach R. W., Rohrmann G. F., Vlak J. M. 1994b; Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proceedings of the National Academy of Sciences USA: 9111212–11216
    [Google Scholar]
  33. Kuhn B., Abdel-Monem M., Krell H., Hoffmann-Berling H. 1979; Evidence for two mechanisms for DNA unwinding by DNA helicases. Journal of Biological Chemistry 254:11343–11350
    [Google Scholar]
  34. Lahue E. E., Matson S. W. 1988; Escherichia coli helicase I catalyses a unidirectional and highly processive unwinding reaction. Journal of Biological Chemistry 263:3208–3215
    [Google Scholar]
  35. Laufs S., Lu A., Arrell K., Carstens E. B. 1997; Autographa californica nuclear polyhedrosis virus p143 gene product is a DNA- binding protein. Virology 228:98–106
    [Google Scholar]
  36. Li X., Yoder B. L., Burgers P. M. J. 1992; Three new helicases from Saccharomyces cerevisiae. Chromosoma 102:S93–S99
    [Google Scholar]
  37. Linder P., Lasko P. F., Ashburner M., Leroy P., Nielsen P. J., Nishi K., Schnier J., Slonimski P. P. 1989; Birth of the DEAD box. Nature 337:121–122
    [Google Scholar]
  38. Liptak L. M., Uprichard S. L., Knipe D. 1996; Functional order of assembly of herpes simplex virus DNA replication proteins into prereplicative site structures. Journal of Virology 70:1759–1767
    [Google Scholar]
  39. Lohman T. M., Bjornson K. P. 1996; Mechanisms of helicase catalyzed DNA unwinding. Annual Review of Biochemistry 65:169–214
    [Google Scholar]
  40. Lu A., Carstens E. B. 1991; Nucleotide sequence of a gene essential for viral DNA replication in the baculovirus Autographa californica nuclear polyhedrosis virus. Virology 181:336–347
    [Google Scholar]
  41. Lu A., Carstens E. B. 1992; Transcriptional analysis of the EcoRI-D region of the baculovirus Autographa californica nuclear polyhedrosis virus identifies an early 4-kilobase RNA encoding the essential p143 gene. Journal of Virology 66:655–663
    [Google Scholar]
  42. Matson S. W., Kaiser-Rogers K. A. 1990; DNA helicases. Annual Review of Biochemistry 59:289–329
    [Google Scholar]
  43. Matson S. W., Bean D. W., George J. W. 1994; DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. Bioassays 16:13–22
    [Google Scholar]
  44. Morris C. F., Moran L. A., Alberts B. M. 1979; Purification of gene 41 protein of bacteriophage T4. Journal of Biological Chemistry 254:6797–67802
    [Google Scholar]
  45. Passarelli A. L., Miller L. K. 1993; Identification of genes encoding late expression factors located between 56ʹ0 and 65ʹ5 map units of the Autographa californica polyhedrosis virus genome. Virology 197:704–714
    [Google Scholar]
  46. Reuven N. B., Koonin E. V., Rudd K. E., Deutscher M. P. 1996; The gene for the longest known Escherichia coli protein is a member of helicase superfamily II. Journal of Bacteriology 177:5393–5400
    [Google Scholar]
  47. Roelvink P. W., Corsaro B. G., Granados R. R. 1995; Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulosis virus enhancin. Journal of General Virology 76:2693–2705
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Sanger F., Nicklen S., Coulson A. R. 1977; Nucleotide sequencing with chain termination inhibitors. Proceedings of the National Academy of Sciences USA: 745463–5467
    [Google Scholar]
  50. Saraste M., Sibbald P. R., Wittinghofer A. 1990; The P-loop, a common motif in ATP- and GTP-binding proteins. Trends in Biological Sciences 15:430–434
    [Google Scholar]
  51. Smits P. H., Vlak J. M. 1994; Registration of the first viral insecticide in the Netherlands: development of Spod-X, based on Spodoptera exigua nuclear polyhedrosis virus. Mededelingen van de faculteit Landbouw- wetenschappen 59:385–392
    [Google Scholar]
  52. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  53. Summers M. D., Smith G. E. 1987 A Manual of Methods for Baculovirus and Insect Cell Culture Procedures Texas Agricultural Ex-periment Station Bulletin 1555
    [Google Scholar]
  54. Thiem S. M., Miller L. K. 1989; Identification, sequence and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. Journal of Virology 63:2008–2018
    [Google Scholar]
  55. Tomalski M. D., Wu J., Miller L. K. 1988; The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167:591–600
    [Google Scholar]
  56. van Strien E. A., Zuidema D., Goldbach R. W., Vlak J. M. 1992; Nucleotide sequence and transcriptional analysis of the polyhedrin gene of Spodoptera exigua nuclear polyhedrosis virus. Journal of General Virology 73:2813–2821
    [Google Scholar]
  57. van Strien E. A., Zuidema D., Goldbach R. W., Vlak J. M. 1996; Sequence and transcriptional analysis of the ubiquitin gene cluster in the genome of Spodoptera exigua nucleopolyhedrovirus. Journal of General Virology 77:2311–2319
    [Google Scholar]
  58. van Strien E. A., Faktor O., Hu Z. H., Zuidema D., Goldbach R. W., Vlak J. M. 1997; Baculoviruses contain a gene for the large subunit of ribonucleotide reductase. Journal of General Virology 78:2365–2377
    [Google Scholar]
  59. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. 1977; The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: noctuidae). In Vitro 13:213–217
    [Google Scholar]
  60. Vlak J. M. 1979; The proteins of the nonoccluded Autographa californica nuclear polyhedrosis virus produced in an established cell line of Spodoptera frugiperda. Journal of Invertebrate Pathology 34:110–118
    [Google Scholar]
  61. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1988; Distantly related sequences in the alpha and beta subunits of ATP synthase, myosin, kinases, and other ATP- requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  62. West S. C. 1996; DNA helicases: new breeds of translocating motors and molecular pumps. Cell 86:177–180
    [Google Scholar]
  63. Xie W., Rothblum L. I. 1991; Rapid small-scale RNA isolation from tissue culture cells. BioTechniques 11:323–327
    [Google Scholar]
  64. Zanotto P. M. A., Kessing B. D., Maruniak J. E. 1993; Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. Journal of Invertebrate Pathology 62:147–164
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-12-3101
Loading
/content/journal/jgv/10.1099/0022-1317-78-12-3101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error