Expression of a functional single chain antibody on the surface of extracellular enveloped vaccinia virus as a step towards selective tumour cell targeting Free

Abstract

Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-11-3019
1997-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/11/9367389.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-11-3019&mimeType=html&fmt=ahah

References

  1. Appleyard G., Hapel A. J., Boulter E. A. 1971; An antigenic difference between intracellular and extracellular rabbitpox virus. Journal of General Virology 3:9–17
    [Google Scholar]
  2. Baselga J., Tripathy D., Mendelsohn J., Baughman S., Benz C. C., Dantis L., Sklarin N. T., Seidman A. D., Hudis C. A., Moore J., Rosen P. P., Twaddell T., Henderson I. C., Norton L. 1996; Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Journal of Clinical Oncology 14:737–744
    [Google Scholar]
  3. Blasco R., Moss B. 1992; Role of cell-associated enveloped vaccinia virus in cell-to-cell spread [erratum 66,5703–5704]. Journal of Virology 66:4170–4179
    [Google Scholar]
  4. Bodey B., Siegel S. E., Kaiser H. E. 1996; Human cancer detection and immunotherapy with conjugated and nonconjugated monoclonal antibodies [Review]. Anticancer Research 16:661–674
    [Google Scholar]
  5. Chang W., Hsiao J. C., Chung C. S., Bair C. H. 1995; Isolation of a monoclonal antibody which blocks vaccinia virus infection. Journal of Virology 69:517–522
    [Google Scholar]
  6. Chu T. H., Dornburg R. 1995; Retroviral vector particles displaying the antigen-binding site of an antibody enable cell-type-specific gene transfer. Journal of Virology 69:2659–2663
    [Google Scholar]
  7. Han X., Kasahara N., Kan Y. W. 1995; Ligand -directed retroviral targeting of human breast cancer cells. Proceedings of the National Academy of Sciences, USA 92:9747–9751
    [Google Scholar]
  8. Harwerth I. M., Wels W., Marte B. M., Hynes N. E. 1992; Monoclonal antibodies against the extracellular domain of the erbB-2 receptor function as partial ligand agonists. Journal of Biological Chemistry 267:15160–15167
    [Google Scholar]
  9. Hodge J. W., Abrams S., Schlom J., Kantor J. A. 1994; Induction of antitumor immunity by recombinant vaccinia viruses expressing B7-1 or B7-2 costimulatory molecules. Cancer Research 54:5552–5555
    [Google Scholar]
  10. Hynes N. E., Stern D. F. 1994; The biology of erbB2/neu/HER-2 and its role in cancer. Biochimica et Biophysica Acta 1198:165–184
    [Google Scholar]
  11. Ichihashi Y. 1996; Extracellular enveloped vaccinia virus escapes neutralization. Virology 217:478–485
    [Google Scholar]
  12. Ichihashi Y., Dales S. 1971; Biogenesis of poxviruses: interrelationship between hemagglutinin production and polykaryocytosis. Virology 46:533–543
    [Google Scholar]
  13. Ichihashi Y., Oie M. 1996; Neutralizing epitope on penetration protein of vaccinia virus. Virology 220:491–494
    [Google Scholar]
  14. Ichihashi Y., Matsumoto S., Dales S. 1971; Biogenesis of poxviruses : role of A-type inclusions and host cell membranes in virus dissemination. Virology 46:507–532
    [Google Scholar]
  15. Ichihashi Y., Takahashi T., Oie M. 1994; Identification ofa vaccinia virus penetration protein. Virology 202:834–843
    [Google Scholar]
  16. Jin D. Y., Li Z. L., Jin Q., Hao Y. W., Hou Y. D. 1989; Vaccinia virus hemagglutinin. A novel member of the immunoglobulin superfamily. Journal of Experimental Medicine 170:571–576
    [Google Scholar]
  17. Kasahara N., Dozy A. M., Kan Y. W. 1994; Tissue-specific targeting of retroviral vectors through ligand-receptor interactions [see comments]. Science 266:1373–1376
    [Google Scholar]
  18. Katz E., Wolffe E. J., Moss B. 1997; The cytoplasmic and transmembrane domains of the vaccinia virus B5R protein target a chimeric human immunodeficiency virus type 1 glycoprotein to the outer envelope of nascent vaccinia virions. Journal of Virology 71:3178–3187
    [Google Scholar]
  19. Lai C. F., Gong S. C., Esteban M. 1991; The 32-kilodalton envelope protein of vaccinia virus synthesized in Escherichia coli binds with specificity to cell surfaces. Journal of Virology 65:499–504
    [Google Scholar]
  20. Lee S. S., Eisenlohr L. C., McCue P. A., Mastrangelo M. J., Lattime E. C. 1994; Intravesical gene therapy: in vivo gene transfer using recombinant vaccinia virus vectors. Cancer Research 54:3325–3328
    [Google Scholar]
  21. Mach J. P., Pelegrin A., Buchegger F. 1991; Imaging and therapy with monoclonal antibodies in non-hematopoietic tumors [Review]. Current Opinion in Immunology 3:685–693
    [Google Scholar]
  22. Mackett M., Smith G. L., Moss B. 1982; Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences, USA 79:7415–7419
    [Google Scholar]
  23. Marin M., Noel D., Valsesiawittman S., Brockly F., Etiennejulan M., Russell S., Cosset F. L., Piechaczyk M. 1996; Targeted infection of human cells via major histocompatibility complex class I molecules by moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. Journal of Virology 70:2957–2962
    [Google Scholar]
  24. McIntosh A. A., Smith G. L. 1996; Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. Journal of Virology 70:272–281
    [Google Scholar]
  25. Moritz D., Wels W., Mattern J., Groner B. 1994; Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB1-expressing tumor cells. Proceedings of the National Academy of Sciences, USA 91:4318–4322
    [Google Scholar]
  26. Panicali D., Paoletti E. 1982; Construction of poxviruses as cloning vectors : insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proceedings of the National Academy of Sciences, USA 79:4927–4931
    [Google Scholar]
  27. Payne L. G. 1978; Polypeptide composition ofextracellular enveloped vaccinia virus. Journal of Virology 27:28–37
    [Google Scholar]
  28. Payne L. G. 1979; Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. Journal of Virology 31:147–155
    [Google Scholar]
  29. Payne L. G. 1980; Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. Journal of General Virology 50:89–100
    [Google Scholar]
  30. Payne L. G., Kristensson K. 1985; Extracellular release of enveloped vaccinia virus from mouse nasal epithelial cells in vivo. Journal of General Virology 66:643–646
    [Google Scholar]
  31. Payne L. G., Norrby E. 1978; Adsorption and penetration of enveloped and naked vaccinia virus particles. Journal of Virology 27:19–27
    [Google Scholar]
  32. Peplinski G. R., Tsung K., Meko J. B., Norton J. A. 1995; In vivo gene therapy of a murine pancreas tumor with recombinant vaccinia virus encoding human interleukin-1β. Surgery 118:185–191
    [Google Scholar]
  33. Perkus M. E., Panicali D., Mercer S., Paoletti E. 1986; Insertion and deletion mutants of vaccinia virus. Virology 152:285–297
    [Google Scholar]
  34. Sarov I., Joklik W. K. 1972; Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology 50:579–592
    [Google Scholar]
  35. Seki M., Oie M., Ichihashi Y., Shida H. 1990; Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. Virology 175:372–384
    [Google Scholar]
  36. Shida H. 1986; Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451–462
    [Google Scholar]
  37. Shida H., Tochikura T., Sato T., Konno T., Hirayoshi K., Seki M., Ito Y., Hatanaka M., Hinuma Y., Sugimoto M. others 1987; Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. EMBO Journal 6:3379–3384
    [Google Scholar]
  38. Somia N. V., Zoppe M., Verma I. M. 1995; Generation oftargeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proceedings of the National Academy of Sciences, USA 92:7570–7574
    [Google Scholar]
  39. Verbik D. J., Joshi S. S. 1995; Immune cells and cytokines - their role in cancer immunotherapy [Review]. International Journal of Oncology 7:205–223
    [Google Scholar]
  40. Wels W., Harwerth I. M., Mueller M., Groner B., Hynes N. E. 1992a; Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Research 52:6310–6317
    [Google Scholar]
  41. Wels W., Harwerth I. M., Zwickl M., Hardman N., Groner B., Hynes N. E. 1992b; Construction, bacterial expression and characterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the human erbB-2 receptor. Bio/Technology 10:1128–1132
    [Google Scholar]
  42. Wels W., Beerli R., Hellmann P., Schmidt M., Marte B. M., Kornilova E. S., Hekele A., Mendelsohn J., Groner B., Hynes N. E. 1995; EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. International Journal of Cancer 60:137–144
    [Google Scholar]
  43. Whitman E. D., Tsung K., Paxson J., Norton J. A. 1994; In vitro and in vivo kinetics of recombinant vaccinia virus cancer-gene therapy. Surgery 116:183–188
    [Google Scholar]
  44. Wittek R., Richner B., Hiller G. 1984; Mapping of the genes coding for the two major vaccinia virus core polypeptides. Nucleic Acids Research 12:4835–4848
    [Google Scholar]
  45. Yarden Y. 1990; Agonistic antibodies stimulate the kinase encoded by the neu protooncogene in living cells but the oncogenic mutant is constitutively active. Proceedings of the National Academy of Sciences, USA 87:2569–2573
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-11-3019
Loading
/content/journal/jgv/10.1099/0022-1317-78-11-3019
Loading

Data & Media loading...

Most cited Most Cited RSS feed