1887

Abstract

BHRF1, a component of the restricted early antigen (EA) complex of the Epstein-Barr virus (EBV) lytic cycle, encodes a 17 kDa putative transmembrane protein with both sequence and functional homology to the Bcl-2 proto-oncogene. To determine whether there was any sequence variation over the BHRF1 open reading frame (ORF), 15 EBV isolates from different geographical regions and from both healthy donors and patients with EBV-associated diseases were sequenced. A small number of base changes which resulted in amino acid substitutions in the BHRF1 protein were found relative to the prototype B95.8 EBV sequence and these were predominantly clustered near the amino terminus of the BHRF1 protein outside conserved domains identified in the Bcl-2 homologues. In transient transfection assays none of the mutations in the BHRF1 ORF from eight different EBV isolates had a

significant effect on BHRF1 protein localization compared to the B95.8 BHRF1 protein. However, transient expression of the adenovirus 12 19K protein or Bcl-2 resulted in localization patterns distinct from that observed with BHRF1 protein. Whilst all eight EBV isolates and E1B-19K gave comparable levels of protection to the DNA-damaging agent c/s-platin, Bcl-2 did not afford significant protection. Thus, despite several amino acid changes in the BHRF1 ORF of some of the EBV isolates studied, the ability of the protein to protect against -platin induced apoptosis is conserved. The highly conserved nature of BHRF1 amongst different EBV isolates at both the sequence and functional level supports the proposed important role of BHRF1 in delaying cell death, thereby maximizing the production of progeny virus and facilitating the establishment of virus persistence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-11-2987
1997-11-01
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/11/9367386.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-11-2987&mimeType=html&fmt=ahah

References

  1. Abdel-Hamid M., Chen J. J., Constantine N., Massoud M., Raab-Traub N. 1992; EBV strain variation: geographical distribution and relation to disease state. Virology 190:168–175
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. G., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnel P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211
    [Google Scholar]
  3. Boise L. H., Gonzalez-Garcia M., Postema C. E., Ding L., Lindsten T., Turka L. A., Mao X., Nunez G., Thompson C. B. 1993; Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608
    [Google Scholar]
  4. Boyd J. M., Malstrom S., subramanian T., Venkatesh L. K., Schae-per U., Elangovan B., D’Sa-Eipper C., Chinnadurai G. 1994; Adenovirus E1B 19kDa and bcl-2 proteins interact with a common set of cellular proteins. Cell 79:341–351
    [Google Scholar]
  5. Boyd J. M., Gallo G. J., Elangovan B., Houghton A. B., Malstrom S., Avery B. J., Ebb R. G., subramanian T., Chittenden T., Lutz R. J., Chinnadurai G. 1995; Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 11:1921–1928
    [Google Scholar]
  6. Chang B. S., Minn A. J., Muchmore S. W., Fesik S. W., Thompson C. B. 1997; Identification of a novel regulation domain in Bcl-x L and Bcl-2. EMBO Journal 16:968–977
    [Google Scholar]
  7. Dawson C. W., Eliopoulos A. G., Dawson J., Young L. S. 1995; BHRF1, a viral homologue of the Bcl-2 oncogene, disturbs epithelial cell differentiation. Oncogene 9:69–77
    [Google Scholar]
  8. Fernandez-Sarabia M. J., Bischoff J. R. 1993; Bcl-2 associates with the ras-related protein R-Ras p23. Nature 366:274–275
    [Google Scholar]
  9. Gilligan K., Rajadurai P., Resnick L., Raab-Traub N. 1990; Epstein-Barr virus small nuclear RNAs are not expressed in permissively infected cells in AIDS-associated leukoplakia. Proceedings of the National Academy of Sciences, USA 87:8790–8794
    [Google Scholar]
  10. Gonzalez A. L., Joly E. 1995; A simple procedure to increase efficiency of DEAE-dextran transfection of COS cells. Trends in Genetics 11:216–217
    [Google Scholar]
  11. Greenspan J. S., Greenspan D., Lennette E. T., Abrams D. I., Canant M. A., Petersen V., Freese U. K. 1995; Replication of Epstein-Barr virus within the epithelial cells of oral hairy leukoplakia, an AIDS- associated lesion. New England Journal of Medicine 313:1564–1571
    [Google Scholar]
  12. Han J., Sabbatini P., Perez D., Rao L., Modha D., White E. 1996; The E1B 19K protein blocks apoptosis by intercating with and inhibiting the p53-inducible Bax protein. Genes & Development 10:461–477
    [Google Scholar]
  13. Henderson S., Rowe M., Gregory C., Croom-Carter D., Wang F., Longnecker R., Kieff E., Rickinson A. 1991; Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:1107–1115
    [Google Scholar]
  14. Henderson S., Huen D., Rowe M., Dawson C., Johnson G., Rickinson A. 1993; Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proceedings of the National Academy of Sciences, USA 90:8479–8483
    [Google Scholar]
  15. Hickish T., Robertson D., Clarke P., Hill M., di Stefano F., Clarke C., Cunningham D. 1994; Ultrastructural localization of BHRF1: an Epstein-Barr virus gene product which has homology with bcl-2. Cancer Research 54:2808–2811
    [Google Scholar]
  16. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59
    [Google Scholar]
  17. Hockenbery D. M., Zutter M., Hickey W., Nahm M., Korsmeyer S. J. 1991; BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proceedings of the National Academy of Sciences, USA 88:6961–6965
    [Google Scholar]
  18. Horner D., Lewis M., Farrell P. J. 1995; Novel hypothesis for the roles of EBNA-1 and BHRF1 in EBV-related cancers. Intervirology 38:195–205
    [Google Scholar]
  19. Khanim F., Yao Q.-Y., Niedobitek G., Sihota S., Rickinson A. B., Young L. S. 1996; Analysis ofEpstein-Barrvirusgene polymorphisms in normal donors and in virus-associated tumors from different geographical locations. Blood 88:3491–3501
    [Google Scholar]
  20. Kieff E. 1996; Epstein-Barr virus and its replication. In Fields Virology, 3rd edn. pp. 2343–2496 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  21. Lee M. A., Yates J. L. 1992; BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replication in vitro. Journal of Virology 66:1899–1906
    [Google Scholar]
  22. Li Q. X., Young L. S., Niedobitek G., Dawson C. W., Birkenbach M., Wang F., Rickinson A. B. 1992; Epstein-Barr virus infection and replication in a human epithelial cell system. Nature 356:347–350
    [Google Scholar]
  23. Lu Q.-L., Hanby A. M., Hajibagheri M. A. N., Gschmeissner S. E., Lu P. J., Taylor-Papadimitriou J., Krajewski S., Reed J. C., Wright N. A. 1994; Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. Journal of Cell Science 107:363–371
    [Google Scholar]
  24. Lung M. L., Lam W. P., Sham J., Choy D., Yong-Sheng Z., Guo H.-Y., Ng M. H. 1991; Detection and prevalence of the ‘f’ variant of Epstein-Barr virus in Southern China. Virology 185:67–71
    [Google Scholar]
  25. Magrath I., Jain V., Bhatia K. 1992; Epstein-Barr virus and Burkitt’s lymphoma. Seminars in Cancer Biology 3:285–295
    [Google Scholar]
  26. Marchini A., Tomkinson B., Cohen J. I., Kieff E. 1991; BHRF1, the Epstein-Barr virus gene with homology to Bcl2, is dispensable for B- lymphocyte transformation and virus replication. Journal of Virology 65:5991–6000
    [Google Scholar]
  27. Maunders M. J., Petti L., Rowe M. 1994; Precipitation of the Epstein-Barr virus protein EBNA 2 by an EBNA 3c-specific monoclonal antibody. Journal of General Virology 75:769–778
    [Google Scholar]
  28. Murray P. G., Swinnen L. J., Constandinou C. M., Pyle J. M., Carr T. J., Hardwick J. M., Ambinder R. F. 1996; Bcl-2 but not its Epstein-Barrvirus-encodedhomologue, BHRF1 is commonly expressed in posttranplantation lymphoproliferative disorders. Blood 87:706–711
    [Google Scholar]
  29. Niedobitek G., Young L. S., Lau R., Brooks L., Greenspan D., Greenspan J. S., Rickinson A. B. 1991; Epstein-Barr virus infection in oral hairy leukoplakia: virus replication in the absence of a detectable latent phase. Journal of General Virology 72:3035–3046
    [Google Scholar]
  30. Niedobitek G., Agathanggelou A., Nicholls J. M. 1996; Epstein- Barr virus infection and the pathogenesis of nasopharyngeal carcinoma: viral gene expression, tumour cell phenotype, and the role of lymphoid stroma. Seminars in Cancer Biology 7:165–174
    [Google Scholar]
  31. Oltvai Z. N., Milliman C. L., Korsmeyer S. J. 1993; Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74:609–619
    [Google Scholar]
  32. Osato T., Imai S. 1996; Epstein-Barr virus and gastric carcinoma. Seminars in Cancer Biology 7:175–182
    [Google Scholar]
  33. Pearson G. R., Luka J., Petti L., Sample J., Birkenbach M., Braun D., Kieff E. 1987; Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology 160:151–161
    [Google Scholar]
  34. Rickinson A. B., Kieff E. 1996; Epstein -Barr virus. In Fields Virology, 3rd edn. pp. 2497–2447 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  35. Sambrook J., Maniatis T., Fritsch E. F. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., Kieff E. 1990; Epstein-Barr virus type-1 (EBV-1) and 2 (EBV-2) differ in their EBNA 3A, EBNA 3B, and EBNA 3C genes. Journal of Virology 64:4084–4092
    [Google Scholar]
  37. Sarid R., Sato T., Bohenzky R. A., Russo J. J., Chang Y. 1997; Kaposi′s sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue. Nature Medicine 3:293–298
    [Google Scholar]
  38. Subramanian T., Boyd J. M., Chinnadurai G. 1995; Functional substitution identifies a cell survival promoting domain common to adenovirus E1B-19 kDa and Bcl-2 proteins. Oncogene 11:2403–2409
    [Google Scholar]
  39. Tarodi B., subramanian T., Chinnadurai G. 1994; Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA- damaging agents and heterologous viral infection. Virology 201:404–407
    [Google Scholar]
  40. Theodorakis P., D’Sa-Eipper C., subramanian T., Chinnadurai G. 1996; Unmasking of a proliferation-restraining activity of the antiapoptosis protein EBV BHRF1. Oncogene 12:1707–1713
    [Google Scholar]
  41. Thomas J. A., Allday M., Crawford D. H. 1991; Epstein-Barr virus- associated lymphoproliferative disorders in immunocompromised individuals. Advances in Cancer Research 57:329–380
    [Google Scholar]
  42. Tsujimoto Y. 1989; Overexpression of the human Bcl-2 gene product results in growth enhancement of Epstein-Barr virus-immortalized B cells. Proceedings of the National Academy of Sciences, USA 86:1958–1962
    [Google Scholar]
  43. Wang H. G., Millan J. A., Cox A. D., Der C. J., Rapp U. R., Beck T., Zha H. B., Reed J. C. 1995; R-Ras promotes apoptosis caused by growth-factor deprivation via a Bcl-2 suppressible mechanism. Journal of Cell Biology 129:1103–1114
    [Google Scholar]
  44. White E. 1996; Life, death and the pursuit of apoptosis. Genes & Development 10:1–15
    [Google Scholar]
  45. Yin X.-M., Oltvai Z. N., Korsmeyer S. J. 1994; BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323
    [Google Scholar]
  46. Young L. S., Yao Q.-Y., Rooney C. M., Sculley T. B., Moss D. J., Rupani H., Laux G., Bornkamm G. W., Rickinson A. B. 1987; New type B isolates of Epstein-Barr virus from Burkitt’s lymphoma and from normal individuals in Burkitt-endemic areas. Journal of General Virology 68:2853–2862
    [Google Scholar]
  47. Young L. S., Lau R., Rowe M., Niedobitek G., Packham G., Shanaham F., Rowe D. T., Greenspan D., Greenspan J. S., Rickinson A. B., Farrell P. J. 1991; Differentiation-associated expression of the Epstein-Barr virus BZLF1 transactivator protein in oral ‘hairy’ leukoplakia. Journal of Virology 65:2868–2874
    [Google Scholar]
  48. Young L. S., Dawson C. W., Eliopoulos A. G. 1997; Viruses and apoptosis. British Medical Bulletin 53: in press
    [Google Scholar]
  49. Zhu W., Cowie A., Wasfy G. W., Penn L. Z., Leber B., Andrews D. W. 1996; Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO Journal 15:4130–4141
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-11-2987
Loading
/content/journal/jgv/10.1099/0022-1317-78-11-2987
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error