1887

Abstract

The human cytomegalovirus (HCMV) UL98 gene is predicted to encode a homologue of the conserved herpesvirus alkaline nuclease. To determine if the HCMV UL98 gene product is functionally homologous to other herpesvirus alkaline nucleases, the HCMV UL98 protein was purified and its activity characterized . Extracts of HCMV-infected cells were fractionated using Q Sepharose, phos- phocellulose and native DNA cellulose chromatography. UL98 immunoreactivity copurified with alkaline pH-dependent nuclease activity. The purified protein migrated at its predicted size of approximately 65 kDa in denaturing polyacrylamide gels, and displayed nuclease activity in an activity gel assay. Enzyme activity was characterized by a high pH optimum, an absolute requirement for divalent cation, salt sensitivity, and 5′ to 3′ exonuclease activity. DNA digestion resulted in 5′ monophos- phoryl mono- and oligodeoxyribonucleotides. Kinetic analyses revealed a turnover rate of greater than 200 per min, and similar apparent affinity and rate constants on single- and double-stranded DNA. These results indicate that a functional alkaline nuclease activity is conserved among distant members of the herpesvirus family, and are consistent with a highly conserved role in the virus life cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-11-2953
1997-11-01
2022-08-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/11/9367383.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-11-2953&mimeType=html&fmt=ahah

References

  1. Adam B.-L., Jervey T. Y., Kohler C. P., Wright G. L., Nelson J. A., Stenberg R. M. 1995; The human cytomegalovirus UL98 gene transcription unit overlaps with the pp28 true late gene (UL99) and encodes a 58-kilodalton early protein. Journal of Virology 69:5304–5310
    [Google Scholar]
  2. Banks L., Purifoy D. J. M., Hurst P.-F., Killington R. A., Powell K. L. 1983; Herpes simplex virus non-structural proteins. IV. Purification of the virus-induced deoxyribonuclease and characterization of the enzyme using monoclonal antibodies. Journal of General Virology 64:2249–2260
    [Google Scholar]
  3. Bayliss S. A., Purifoy D. J. M., Littler E. 1989; The characterization of the EBV alkaline deoxyribonuclease cloned and expressed in E. coli. Nucleic Acids Research 17:7609–7622
    [Google Scholar]
  4. Britt W. J., Alford C. A. 1996; Cytomegalovirus. In Fields Virology, 3rd edn. pp. 2493–2523 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  5. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchinson C. A.III Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD 169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  6. Clough W. 1980; An endonuclease isolated from EBV-producing human lymphoblastoid cells. Proceedings of the National Academy of Sciences, USA 77:6194–6198
    [Google Scholar]
  7. Cotton F. A., Hazen E. E., Legg M. J. 1979; Staphylococcal nuclease : proposed mechanism of action based on structure of enzyme- thymidine 3′,5′-bisphosphate-calcium ion complex at 1·5 angstrom resolution. Proceedings of the National Academy of Sciences, USA 76:2551–2555
    [Google Scholar]
  8. Daibata M., Sairenji T. 1993; EBV replication and expression of EA-D (BMRF1 gene product), virus-specific deoxyribonuclease, and DNA polymerase in EBV-activated Akata cells. Virology 196:900–904
    [Google Scholar]
  9. Dijkstra J. M., Fuchs W., Mettenleiter T. C., Klupp B. G. 1997; Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Archives of Virology 142:17–35
    [Google Scholar]
  10. Fixman E. D., Hayward G. S., Hayward S. D. 1992; Trans-acting requirements for replication of EpsteinBarr virus ori-lyt. Journal of Virology 66:5030–5039
    [Google Scholar]
  11. Hoffman P. J. 1981; Mechanism of degradation of duplex DNA by the DNase induced by herpes simplex virus. Journal of Virology 38:1005–1014
    [Google Scholar]
  12. Hoffman P. J., Cheng Y.-C. 1978; The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2. Journal of Biological Chemistry 253:3557–3562
    [Google Scholar]
  13. Hoffman P. J., Cheng Y.-C. 1979; DNase induced after infection of KB cells by herpes simplex virus type 1 or type 2. Journal of Virology 32:449–457
    [Google Scholar]
  14. Keir H. M. 1968; Virus-induced enzymes in mammalian cells infected with DNA-viruses. In The Molecular Biology of Viruses. The Eighteenth Symposium of the Society for General Microbiology pp. 67–99 Crawford L. V., Stoker M. G. P. Edited by London: Cambridge University Press;
    [Google Scholar]
  15. Knopf C. W., Weisshart K. 1990; Comparison of exonucleolytic activities of herpes simplex virus type-1 DNA polymerase and DNase. European Journal of Biochemistry 191:263–273
    [Google Scholar]
  16. Kornberg A., Baker T. A. 1992 DNA Replication, 2nd edn.. New York: W. H. Freeman;
    [Google Scholar]
  17. Lahijani R. S., Otteson E. W., Adlish J. D., St Jeor S. C. 1991; Characterization of a human cytomegalovirus 1·6-kilobase late mRNA and identification of its putative protein product. Journal of Virology 65:373–381
    [Google Scholar]
  18. Lahijani R. S., Otteson E. W., St Jeor S. C. 1992; A possible role for nonsense suppression in the synthesis of a human cytomegalovirus 58-kDa virion protein. Virology 186:309–312
    [Google Scholar]
  19. Lin S.-F., Hsu T.-Y., Liu M.-Y., Lin L.-S., Yang H.-L., Chen J.-Y., Yang C.-S. 1995; Characterization of Epstein-Barr virus DNase and its interaction with the major DNA binding protein. Virology 208:712–722
    [Google Scholar]
  20. Martinez R., Sarisky R. T., Weber P. C., Weller S. K. 1996a; Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. Journal of Virology 70:2075–2085
    [Google Scholar]
  21. Martinez R., Shao L., Bronstein J. C., Weber P. C., Weller S. K. 1996b; The product of a 1·9 kb mRNA which overlaps the HSV-1 alkaline nuclease gene (UL12) cannot relieve the growth defects of a null mutant. Virology 215:152–164
    [Google Scholar]
  22. Mocarski E. J. 1996; Cytomegaloviruses and their replication. In Fields Virology, 3rd edn. pp. 2447–2492 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  23. Morrison J. M., Keir H. M. 1968; A new DNA-exonuclease in cells infected with herpes virus: partial purification and properties of the enzyme. Journal of General Virology 3:337–347
    [Google Scholar]
  24. Moss H., Chartrand M. C., Timbury M. C., Hay J. 1979; Mutant of herpes simplex virus type 2 with temperature sensitive lesions affecting virion thermostability and DNase activity: identification of the lethal mutation and physical mapping of the nuc-lesion. Journal of Virology 32:140–146
    [Google Scholar]
  25. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. Journal of Virology 70:5975–5989
    [Google Scholar]
  26. Pari G. S., Anders D. G. 1993; Eleven loci encoding trans-acting factors are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA replication. Journal of Virology 67:6979–6988
    [Google Scholar]
  27. Powell K. L., Purifoy D. J. M. 1977; Nonstructural proteins of herpes simplex virus. I. Purification of the induced DNA polymerase. Journal of Virology 24:618–626
    [Google Scholar]
  28. Preston C. M., Cordingley M. G. 1982; mRNA and DNA-directed synthesis of herpes simplex virus-coded exonuclease in Xenopus laevis oocytes. Journal of Virology 43:386–394
    [Google Scholar]
  29. Sayers J. R., Eckstein F. 1990; Properties of overexpressed phage T5 D15 exonuclease. Journal of Biological Chemistry 265:18311–18317
    [Google Scholar]
  30. Shao L., Rapp L. M., Weller S. K. 1993; Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196:146–162
    [Google Scholar]
  31. Stolzenberg J.-C., Ooka T. 1990; Purification and properties of Epstein-Barr virus DNase expressed in E. coli. Journal of Virology 64:96–104
    [Google Scholar]
  32. Strobel-Fidler M., Franke B. 1980; Alkaline deoxyribonuclease induced by herpes simplex virus type 1 : composition and properties of the purified enzyme. Virology 103:493–501
    [Google Scholar]
  33. Szankasi P., Smith G. R. 1992a; A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. Journal ofBiological Chemistry 267:3014–3023
    [Google Scholar]
  34. Szankasi P., Smith G. R. 1992b; A single-stranded DNA exonuclease from Schizosaccharomyces pombe. Biochemistry 31:6769–6773
    [Google Scholar]
  35. Thomas M. S., Banks L. M., Purifoy D. J. M., Powell K. L. 1988; Production of antibodies of predetermined specificity against herpes simplex virus DNA polymerase and their use in characterization of the enzyme. Journal of Virology 62:1550–1557
    [Google Scholar]
  36. Thomas M. S., Gao M., Knipe D. M., Powell K. L. 1992; Association between the herpes simplex virus major DNA-binding protein and alkaline nuclease. Journal of Virology 66:1152–1161
    [Google Scholar]
  37. Vaughan P. J., Banks L. M., Purifoy D. J. M., Powell K. L. 1984; Interactions between herpes simplex virus DNA-binding proteins. Journal of General Virology 65:2033–2041
    [Google Scholar]
  38. Weber P. C., Bronstein J. C. 1996; Purification and characterization of herpes simplex virus type 1 alkaline exonuclease expressed in E. coli. Journal of Virology 70:2008–2013
    [Google Scholar]
  39. Weller S. K. 1995; Herpes simplex virus DNA replication and genome maturation. In The DNA Provirus: Howard Temins Scientific Legacy pp. 189–213 Cooper B. S. G. M., Temin R. Edited by Washington, DC: ASM Press;
    [Google Scholar]
  40. Weller S. K., Seghatoleslami M. R., Shao L., Rowse D., Carmichael E. P. 1990; The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis : isolation and characterization of a lacZ insertion mutant. Journal of General Virology 71:2941–2952
    [Google Scholar]
  41. Wing B. A., Huang E.-S. 1995; Analysis and mapping of a family of 3′-coterminal transcripts containing coding sequences for human cytomegalovirus open reading frames UL93 through UL99. Journal of Virology 69:1521–1531
    [Google Scholar]
  42. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin- dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-11-2953
Loading
/content/journal/jgv/10.1099/0022-1317-78-11-2953
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error