1887

Abstract

We have identified the herpes simplex virus type 1 (HSV-1) US10 gene product using rabbit polyclonal antisera raised against a recombinant 6xHis-US10 fusion protein expressed in . The antiserum reacted specifically with 34 and 36 kDa proteins in HSV-1 KOS-infected cells as shown by Western blotting and immunoprecipitation experiments. The 36 kDa protein was immunoprecipi- tated with the US10 antiserum from P-labelled lysates of Vero cells infected with HSV-1 KOS, demonstrating that the US10 protein was phos- phorylated. Indirect immunofluorescence studies localized the US10 protein mainly to nuclei as large discrete particles at later times post-infection (p.i.), and nuclear fractionation studies revealed that the protein was tightly associated with the nuclear matrix. Moreover, analysis of isolated intracellular capsids showed that both phosphorylated and unphosphorylated forms of the US10 product were also associated with the capsid/tegument. These results indicate that the US10 gene of HSV-1 encodes a capsid/tegument-associated phospho- protein which copurifies with the nuclear matrix.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-11-2923
1997-11-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/11/9367380.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-11-2923&mimeType=html&fmt=ahah

References

  1. Ben-Ze’ev A., Abulafia R., Bratosin S. 1983; Herpes simplex virus and protein transport are associated with the cytoskeletal framework and the nuclear matrix in infected BSC-1 cells. Virology 129:501–507
    [Google Scholar]
  2. Berezney R. 1991; The nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus. Journal of Cellular Biochemistry 47:109–123
    [Google Scholar]
  3. Berg J. M. 1990; Zinc fingers and other metal-binding domains. Journal of Biological Chemistry 265:6513–6516
    [Google Scholar]
  4. Brown S. M., Harland J. 1987; Three mutants of herpes simplex virus type 2: one lacking the genes US10, US11, and US12 and two in which RS has been extended by 6 kb to 0.91 map units with loss of US sequences between 0.94 and the US/TRS junction. Journal of General Virology 68:1–18
    [Google Scholar]
  5. Capco D. G., Wan K. M., Penman S. 1982; The nuclear matrix: three-dimensional architecture and protein composition. Cell 29:847–858
    [Google Scholar]
  6. Chang Y. E., Roizman B. 1993; The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. Journal of Virology 67:6348–6356
    [Google Scholar]
  7. Cohen G. H., Ponce de Leon M., Digglemann H., Lawrence W. C., Vernon S. K., Eisenberg R. J. 1980; Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. Journal of Virology 34:521–531
    [Google Scholar]
  8. Darlix J.-L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. 1995; First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. Journal of Molecular Biology 254:523–537
    [Google Scholar]
  9. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  10. Davison M. J., Rixon F. J., Davison A. D. 1992; Identifcation of genes encoding two capsid proteins of herpes simplex virus type 1. Journal of General Virology 73:2709–2713
    [Google Scholar]
  11. Diaz J.-J., Simonin D., Masse T., Deviller P., Kindbeiter K., Denoroy L., Madjar J.-J. 1993; The herpes simplex virus 1 US11 gene product is a phosphorylated protein found to be non-specifically associated with both ribosomal subunits. Journal of General Virology 74:397–406
    [Google Scholar]
  12. Evans R. M., Hollenberg S. M. 1988; Zinc fingers : gilt by association. Cell 52:1–3
    [Google Scholar]
  13. Frame M. C., McGeoch D. J., Rixon F. J., Orr A. C., Marsden H. S. 1986; The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology 150:321–332
    [Google Scholar]
  14. Georgopoulou U., Michaelidou A., Roizman B., Mavromara-Nazos P. 1993; Identification of a new transcriptional unit and gene product within the unique sequences of the short component of the herpes simplex virus 1 genome. Journal of Virology 67:3961–3968
    [Google Scholar]
  15. Georgopoulou U., Kakkanas A., Miriagou V., Michaelidou A., Mavromara P. 1995; Characterization of the US8.5 protein of herpes simplex virus. Archives of Virology 140:2227–2241
    [Google Scholar]
  16. Gibson W., Roizman B. 1972; Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtype 1 and 2. Journal of Virology 10:1044–1052
    [Google Scholar]
  17. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Heilman C. J. Jr Zweig M., Stephenson J. R., Hampar B. 1979; Isolation of nucleocapsid polypeptide of herpes simplex virus types 1 and 2 possessing immunologically type-specific and cross reactive determinants. Journal of Virology 29:34–42
    [Google Scholar]
  19. Holden R. V., Yalamanchili R. R., Harty R. N., O’Callaghan D. J. 1992; Identification and characterization of an equine herpesvirus 1 late gene encoding a potential zinc finger. Virology 188:704–713
    [Google Scholar]
  20. Jiang Y.-M., Daikoku T., Yamamoto M., Morishima T., Nishiyama Y. 1995; Growth and cytopathogenicity of herpes simplex virus in a macrophage cell line, RAW264: a good indicator of intraperitoneal pathogenicity. Microbiology and Immunology 39:905–909
    [Google Scholar]
  21. Johnson D. C., Frame M. C., Ligas M. V., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. Journal of Virology 62:1347–1354
    [Google Scholar]
  22. Lee M. S., Gippert G. P., Soman K. V., Case D. A., Wright P. E. 1989; Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245:635–637
    [Google Scholar]
  23. Liu F., Roizman B. 1991; The herpes simplex virus type 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. JournalofVirology 65:5149–5156
    [Google Scholar]
  24. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal ofMolecular Biology 181:1–13
    [Google Scholar]
  25. McNabb D. S., Courtney R. J. 1992; Identification and characterization of herpes simplex virus type 1 virion protein encoded by the UL35 open reading frame. Journal of Virology 66:2653–2663
    [Google Scholar]
  26. Miller J., McLachlan A. D., Klug A. 1985; Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal 4:1609–1614
    [Google Scholar]
  27. Newcomb W. W., Trus B. L., Booy F. P., Steven A. C., Wall J. S., Brown J. C. 1993; Structure of the herpes simplex virus capsid: molecular composition of the pentons and the triplexes. Journal of Molecular Biology 232:499–511
    [Google Scholar]
  28. Nishiyama Y., Kurachi R., Daikoku T., Umene K. 1993; The US9, 10, 11, and 12 genes of herpes simplex virus type 1 are of no importance for its neurovirulence and latency in mice. Virology 194:419–423
    [Google Scholar]
  29. Parraga G., Horvath S. J., Eisen A., Taylor W. E., Hood L., Young E. T., Klevit R. E. 1988; Zinc-dependent structure of a single-finger domain of yeast ADR1. Science 241:1489–1492
    [Google Scholar]
  30. Patel A. H., Maclean J. B. 1995; The product of the UL6 gene of herpes simplex virus type 1 is associated with virus capsid. Virology 206:465–478
    [Google Scholar]
  31. Pertuiset B., Boccara M., Cebrian J., Berthelot N., Chousterman S., Puvioon-Dutilleul F., Sisman J., Sheldrick P. 1989; Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene required for capsid assembly. Journal of Virology 63:2169–2179
    [Google Scholar]
  32. Preston V. G., Coats J. A. V., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  33. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., AlKobaisi M. F. 1992; Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole UL26 reading frame. Virology 186:87–98
    [Google Scholar]
  34. Quinlan M. P., Knipe D. M. 1983; Nuclear localization of herpes virus proteins : potential role for the cellular framework. Molecular and Cellular Biology 3:315–324
    [Google Scholar]
  35. Rixon F. J. 1993; Structure and assembly of herpesviruses. Seminars in Virology 4:135–144
    [Google Scholar]
  36. Rixon F. J., McGeoch D. J. 1984; A 3′ co-terminal family of mRNAs from the herpes simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  37. Rixon F. J., Davison M. D., Davison A. J. 1990; Identifcationof the genes encoding two capsid proteins of herpes simplex virus type 1 by direct amino acid sequencing. Journal of General Virology 71:1211–1214
    [Google Scholar]
  38. Roizman B., Sears A. E. 1996; Herpes simplex viruses and their replication. In Fields Virology pp. 2231–2295 Fields B. N., Knipe D. M., Howley P. M. Edited by New York: Lippincott-Raven;
    [Google Scholar]
  39. Roller R. J., Roizman B. 1992; The herpes simplex virus 1 RNA binding protein US11 is a virion component and associates with ribosomal 60S subunits. Journal of Virology 66:3624–3632
    [Google Scholar]
  40. Sakaguchi M., Urakawa T., Hirayama Y., Miki N., Yamamoto M., Hirai K. 1992; Sequence determination and genetic content of an 8·9kb restriction fragment in the short unique region and the internal inverted repeat of Marek’s disease virus type 1 DNA. Virus Genes 6:365–378
    [Google Scholar]
  41. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J. 1994; Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. Journal of General Virology 75:1101–1113
    [Google Scholar]
  42. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  43. Thomsen D. R., Roof L. L., Homa F. L. 1994; Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. Journal of Virology 68:2442–2457
    [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : procedure and some applications. Proceedings of the National Academy of Sciences, USA 76:4350–4354
    [Google Scholar]
  45. Tsutsui Y., Nishiyama Y., Yoshida S., Maeno K., Hoshino M. 1983; Role of the nuclear matrix in the growth of herpes simplex virus type 2. Archives of Virology 77:27–38
    [Google Scholar]
  46. Ward P. L., Roizman B. 1994; Herpes simplex genes: the blueprint of the successful human pathogen. Trends in Genetics 10:267–274
    [Google Scholar]
  47. Ward P. L., Ogle W. O., Roizman B. 1996; Assemblons : nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1. Journal of Virology 70:4623–4631
    [Google Scholar]
  48. Weller S. K., Carmichael E. P., Aschman D. P., Goldstein D. J., Schaffer P. A. 1987; Genetic and phenotypic characterization of mutants in four essential genes that map to the left half of HSV-1 UL DNA. Virology 161:198–210
    [Google Scholar]
  49. Yamashita Y., Shimokata K., Mizuno S., Daikoku T., Tsurumi T., Nishiyama Y. 1996; Calnexin acts as a molecular chaperone during the folding of glycoprotein B of human cytomegalovirus. Journal of Virology 70:2237–2246
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-11-2923
Loading
/content/journal/jgv/10.1099/0022-1317-78-11-2923
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error