1887

Abstract

In a step towards a tetravalent dengue virus subunit vaccine which is economical to produce, highly immunogenic and stable, a hybrid dengue virus envelope (E) protein molecule has been constructed. It consists of 36 amino acids from the membrane protein, the N-terminal 288 amino acids of the dengue-2 virus E protein plus amino acids 289–424 of the dengue-3 virus E protein. It has been engineered for secretory expression by fusion to a mellitin secretory signal sequence and truncation of the hydrophobic transmembrane segment. Using the baculovirus expression system and serum- free conditions, more than 95 % of recombinant dengue-2 virus-dengue-3 virus hybrid E protein (rD2D3E) was secreted into the cell culture supernatant in a stable form with multiple features indicative of preserved conformation. The hybrid molecule reacted with a panel of dengue virus- and flavivirus-specific MAbs which recognize linear or conformational epitopes on dengue virions. Human dengue virus-specific antisera also reacted with the protein. The hybrid rD2D3E protein was able to inhibit the binding of dengue-2 and dengue- 3 viruses to human myelomonocytic cells, suggesting that the receptor-binding epitope(s) was preserved. Adjuvant-free immunization with the hybrid protein induced an antibody response to both dengue-2 and dengue-3 virus in outbred mice, comparable in strength to that of individual rD2E and rD3E proteins. Notably, these antibody responses were primarily of the IgG2a and IgG2b isotype. A strong dengue virus cross-reactive T cell response was also induced in the mice, suggesting that dengue virus hybrid E proteins could form the basis of an efficacious multivalent dengue virus vaccine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-11-2723
1997-11-01
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/11/9367357.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-11-2723&mimeType=html&fmt=ahah

References

  1. Aaskov J. G., Williams L., Fletcher J., Hay R. 1988; Failure of a dengue 1 subunit vaccine to protect mice against a lethal dengue virus infection. American Journal of Tropical Medicine and Hygiene 39:511–518
    [Google Scholar]
  2. Aaskov J. G., Geysen H. M., Mason T. J. 1989; Serologically defined linear epitopes in the envelope protein of dengue 2 (Jamaica strain 1409). Archives of Virology 105:209–221
    [Google Scholar]
  3. Barrios C., Brawand P., Berney M., Brandt C., Lambert P. H., Siegrist C. A. 1996; Neonatal and early life immune responses to various forms of vaccine antigens qualitatively differ from adult responses: predominance of a Th2-biased pattern which persist after adult boosting. European Journal of Immunology 26:1489–1496
    [Google Scholar]
  4. Baxter G. D., Lavin M. F. 1992; Specific protein dephosphorylation in apoptosis induced by ionizing radiation and heat shock in human lymphoid tumor lines. Journal of Immunology 148:1949–1954
    [Google Scholar]
  5. Bhamarapravati N., Yoksan S. 1989; Study of bivalent dengue vaccine in volunteers. Lancet i:1077
    [Google Scholar]
  6. Bielefeldt-Ohmann H., Marzo A., Fitzpatrick D. R., Jarnicki A., Davis M., Manning L. S., Robinson B. W. S. 1994; Immunobiology of murine malignant mesothelioma (MM): characterisation of tumour infiltrating leukocytes and cytokine production in a murine model of MM. Cancer Immunology Immunotherapy 39:347–359
    [Google Scholar]
  7. Brandt W. E., McCown J. M., Gentry M. K., Russell P. K. 1982; Infection enhancement of dengue type 2 virus in the U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants. Infection and Immunity 36:1036–1041
    [Google Scholar]
  8. Bray M., Lai C. J. 1991; Construction of chimeric dengue virus by substitution of structural protein genes. Proceedings of the National Academy of Sciences USA: 8810342–10346
    [Google Scholar]
  9. Bretscher P. A., Wei G. J., Menon J. N., Bielefeldt-Ohmann H. 1992; Establishment of stable, cell-mediated immunity that makes susceptible mice resistant to Leishmania major. Science 257:539–542
    [Google Scholar]
  10. Cecilia D., Gould E. A. 1991; Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization- resistant mutants. Virology 181:70–77
    [Google Scholar]
  11. Chen W., Kawano H., Men R., Clark D., Lai C. J. 1995; Construction of intertypic chimeric dengue viruses exhibiting type 3 antigenicity and neurovirulence for mice. Journal of Virology 69:5186–5190
    [Google Scholar]
  12. Chu M. C., O’Rourke E. J., Trent D. W. 1989; Genetic relatedness among structural protein genes of dengue 1 virus strains. Journal of General Virology 70:1701–1712
    [Google Scholar]
  13. Coffman R. L., Lebman D. A., Rothman R. 1993; Mechanisms and regulation of immunoglobulin isotype switching. Advances in Immunology 54:229–270
    [Google Scholar]
  14. Constant S., Pfeiffer C., Woodard A., Pasqualini T., Bottomley K. 1995; Extent of T cell receptor ligation can determine the functional differentiation of naive CD4 + T cells. Journal of Experimental Medicine 182:1591–1596
    [Google Scholar]
  15. Delenda C., Staropoli I., Frenkiel M. P., Cabanie L., Deubel V. 1994; Analysis of C-terminally truncated dengue 2 and dengue 3 virus envelope glycoproteins: processing in insect cells and immunogenic properties in mice. Journal of General Virology 75: 1569–1578
    [Google Scholar]
  16. Deubel V., Bordier M., Megret F., Gentry M. K., Schlesinger J. J., Girard M. 1991; Processing, secretion, and immunoreactivity of carboxy terminally truncated dengue-2 virus envelope proteins expressed in insect cells by recombinant baculoviruses. Virology 180:442–447
    [Google Scholar]
  17. Deubel V., Nogueira R. M., Drouet M. T., Zeller H., Reynes J. M., Ha D. Q. 1993; Direct sequencing of genomic cDNA fragments amplified by PCR for molecular epidemiology of dengue-2 viruses. Archives of Virology 129:197–210
    [Google Scholar]
  18. Fitzpatrick D. R., Kelso A. 1995; Dissociated expression of granulocyte-macrophage CSF and IL-3 in short-term T cell clones from normal mice. Journal of Immunology 155:5140–5150
    [Google Scholar]
  19. Gentry M. K., Henchal E. A., McCown J. M., Brandt W. E., Dalrymple J. M. 1982; Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 31:548–553
    [Google Scholar]
  20. Halstead S. B., Shotwell H., Casals J. 1973; Studies of the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. Journal of Infectious Diseases 128:15–22
    [Google Scholar]
  21. Harris P., Ralph P. 1985; Human leukemic models of myelomono- cytic development: a review of the HL-60 and U937 cell lines. Journal of Leukocyte Biology 37:407–422
    [Google Scholar]
  22. Hocart M. J., MacKenzie J. S., Stewart G. A. 1989; The immunoglobulin G subclass responses of mice to influenza A virus: the effect of mouse strain, and the neutralizing abilities of individual protein A- purified subclass antibodies. Journal of General Virology 70:2439–2448
    [Google Scholar]
  23. Hosken N. A., Shibuya K., Heath A. W., Murphey K. M., O’Garra A. 1995; . The effect of antigen dose on CD4 + T helper cell phenotype development in a T cell receptor-αβ-transgenic model. Journal of Experimental Medicine 182:1579–1584
    [Google Scholar]
  24. Innis B. L., Thirawuth V., Hemachudha C. 1989; Identification of continuous epitopes of the envelope glycoprotein of dengue type 2 virus. American Journal of Tropical Medicine and Hygiene 40:676–687
    [Google Scholar]
  25. Jiang W. R., Lowe A., Higgs S., Reid H., Gould E. A. 1993; Single amino acid codon changes detected in Louping III virus antibody- resistant mutants with reduced neurovirulence. Journal of General Virology 74:931–935
    [Google Scholar]
  26. Jianmin Z., Linn M. L., Bilich R., Gentry M. K., Aaskov J. G. 1995; Analysis of functional epitopes on the dengue 2 E protein using monoclonal IgM antibodies. Archives of Virology 140:899–913
    [Google Scholar]
  27. Johnson A. J., Guirakhoo F., Roehrig J. T. 1994; The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203:241–249
    [Google Scholar]
  28. Kulkarni A. B., Mullbacher A., Parrish C. R., Westaway E. G., Coia G., Blanden R. V. 1992; Analysis of murine major histocompatibility complex class II-restricted T-cell responses to the flavivirus Kunjin by using vaccinia virus expression. Journal of Virology 66:3583–3592
    [Google Scholar]
  29. Lanciotti R. S., Lewis J. G., Gubler D. J., Trent D. W. 1994; Molecular evolution and epidemiology of dengue-3 viruses. Journal of General Virology 75:65–75
    [Google Scholar]
  30. Levine B., Hardwick J. M., Trapp B. D., Crawford T. O., Bollinger R. C., Griffin D. E. 1991; Antibody -mediated clearance of alphavirus infection from neurons. Science 254:856–860
    [Google Scholar]
  31. Lin B., Parrish C. R., Murray J. M., Wright P. J. 1994; Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology 202:885–890
    [Google Scholar]
  32. Lobigs M., Dalgarno L., Schlesinger J. J., Weir R. C. 1987; Location of a neutralization determinant in the E protein of yellow fever virus. Virology 161:474–478
    [Google Scholar]
  33. Maraskovsky E., Troutt A. B., Kelso A. 1992; Co-engagement of CD3 with LFA-1 or ICAM-1 adhesion molecules enhances the frequency of activation of single murine CD4 + and CD8 + T cells and induces synthesis of IL-3 and IFN-y but not IL-4 or IL-6. International Immunology 4:475–485
    [Google Scholar]
  34. Megret F., Hugnoy J. P., Falconer A., Gentry M. K., Morens D. M., Murray J. M., Schlesinger J. J., Wright P. J., Young P., Van Regenmortel H. V., Deubel V. 1992; Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology 187:480–491
    [Google Scholar]
  35. Monath T. P. 1994; Yellow fever and dengue - the interactions of virus, vector and host in the re-emergence of epidemic disease. Seminars in Virology 5:133–145
    [Google Scholar]
  36. Morens D. M. 1994; Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clinical Infectious Diseases 19:500–512
    [Google Scholar]
  37. Mroczkowski B. S., Huvar A., Lernhardt W., Misono K., Nielson K., Scott B. 1994; Secretion of thermostable DNA polymerase using a novel baculovirus vector. Journal of Biological Chemistry 269:13522–13528
    [Google Scholar]
  38. O’Reilly D. R., Miller L. K., Luckow V. A. 1994 Baculovirus Expression Vectors: A Laboratory Manual New York: Oxford University Press;
    [Google Scholar]
  39. Putnak R., Feighny R., Burrous J., Cochran M., Hackett C., Smith G., Hoke C. 1991; Dengue-1 virus envelope glycoprotein gene expressed in recombinant baculovirus elicits virus-neutralizing antibody in mice and protects them from virus challenge. American Journal of Tropical Medicine and Hygiene 45:159–167
    [Google Scholar]
  40. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298
    [Google Scholar]
  41. Richardson C. D. 1995; Baculovirus expression protocols. Methods in Molecular Biology 39:
    [Google Scholar]
  42. Roehrig J. T., Ris P. A., Brubaker J. R., Hunt A. R., Beaty B. J., Trent D. W., Mathews J. H. 1994; T-helper cell epitopes on the E- glycoprotein of dengue 2 Jamaica virus. Virology 198:31–38
    [Google Scholar]
  43. Sarzotti M., Robbins D. S., Hoffman P. M. 1996; Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271:1726–1728
    [Google Scholar]
  44. Schlesinger R. W. 1977 Dengue Viruses New York: Springer-Verlag;
    [Google Scholar]
  45. Seto N. O., Ou D., Gillam S. 1995; Expression and characterization of secreted forms of rubella virus E2 glycoprotein in insect cells. Virology 206:736–741
    [Google Scholar]
  46. Smucny J. J., Kelly E. P., Macarthy P. O., King A. D. 1995; Murine immunoglobulin G subclass responses following immunization with live dengue virus or a recombinant dengue envelope protein. American Journal of Tropical Medicine and Hygiene 53:432–437
    [Google Scholar]
  47. Staropoli I., Clement J. M., Frenkiel M. P., Hofnung M., Deubel V. 1996; Dengue virus envelope glycoprotein can be secreted from insect cells as fusion with the maltose-binding protein. Journal of Virological Methods 56:179–189
    [Google Scholar]
  48. Staton J. M., Dench J. E., Currie B., Fitzpatrick D. R., Himbeck R. P., Allen R., Bruce J., Robinson B., Bielefeldt-Ohmann H. 1995; Tissue-expression and immune recognition of stress proteins in sarcoidosis and other chronic lung diseases. Immunology and Cell Biology 73:23–32
    [Google Scholar]
  49. Trirawatanapong T., Chandran B., Putnak R., Padmanabhan R. 1992; Mapping of a region of dengue virus type-2 glycoprotein required for binding by a neutralizing monoclonal antibody. Gene 116:139–150
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-78-11-2723
Loading
/content/journal/jgv/10.1099/0022-1317-78-11-2723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error