1887

Abstract

The genome of plum pox virus contains a single open reading frame that is translated into a large polyprotein. Although the open reading frame starts at nucleotide 36 (AUG), it is translated from the second, AUG, which is in a more favourable context for translation initiation. We have carried out translation and transient expression analysis in protoplasts of a nested set of substitution and deletion mutants, and the results show that no internal structure in the 5′ noncoding region of plum pox virus is necessary for efficient translation initiation. On the other hand, when the cryptic AUG was placed in a favourable context, it turned into an efficient initiation codon . Furthermore, AUGs that were placed in a favourable context, initiating short intraleader open reading frames, repressed translation initiation from the AUG and . These results point to as the mechanism of translation initiation of plum poxvirus RNA. Nevertheless, it is a peculiar where the initiation of translation does not require a cap structure at the 5′ end. This fact is congruent with the experimentally predicted absence of a stable secondary structure at the 5′ noncoding region.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-10-2691
1997-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/10/9349492.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-10-2691&mimeType=html&fmt=ahah

References

  1. Anthony D. D., Merrick W. C. 1991; Eukaryotic initiation factor 4F: implications for a role in internal initiation of translation. Journal of Biological Chemistry 266:10218–10226
    [Google Scholar]
  2. Basso J., Dallaire P., Charest P. J., Devantier Y., Laliberté J. F. 1994; Evidence for an internal ribosome entry site within the 5ʹ nontranslated region of turnip mosaic potyvirus RNA. Journal of General Virology 75:3157–3165
    [Google Scholar]
  3. Belsham G. J., Lomonossoff G. P. 1991; The mechanism of translation of cowpea mosaic virus middle component RNA: no evidence for internal initiation from experiments in an animal cell transient expression system. Journal of General Virology 72:3109–3113
    [Google Scholar]
  4. Carrington J. C., Freed D. D. 1990; Cap-independent enhancement of translation by a plant potyvirus 5ʹ nontranslated region. Journal of Virology 64:1590–1597
    [Google Scholar]
  5. Danthinne X., Seurinck J., Meulewaeter F., Montagu M. V., Cornelissen M. 1993; The 3ʹ untranslated region of satellite tobacco necrosis virus RNA stimulates translation in vitro. Molecular and Cellular Biology 13:3340–3349
    [Google Scholar]
  6. Dinesh-Kumar S. P., Miller W. A. 1993; Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell 5:679–692
    [Google Scholar]
  7. Fletcher L., Corbin S. D., Browning K. S., Ravel J. M. 1990; The absence of a m7G cap on β-globin mRNA and alfalfa mosaic virus RNA 4 increases the amounts of initiation factor 4F required for translation. Journal of Biological Chemistry 265:19582–19587
    [Google Scholar]
  8. Gallie D. R. 1991; The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes & Development 5:2108–2116
    [Google Scholar]
  9. Gallie D. R. 1993; Posttranscriptional regulation of gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 44:77–105
    [Google Scholar]
  10. Gallie D. R., Kobayashi M. 1994; The role of the 3ʹ-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 142:159–165
    [Google Scholar]
  11. Gallie D. R., Tanguay R. L., Leathers V. 1995; The tobacco etch viral 5ʹ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 165:233–238
    [Google Scholar]
  12. Gilmer D., Richards K., Jonard G., Guilley H. 1992; Cis-active sequences near the 5ʹ-termini of beet necrotic yellow vein virus RNAs 3 and 4. Virology 190:55–67
    [Google Scholar]
  13. Grifo J. A., Tahara S. M., Morgan M. A., Shatkin A. J., Merrick W. C. 1983; New initiation factor activity required for globin mRNA translation. Journal of Biological Chemistry 258:5804–5810
    [Google Scholar]
  14. Guo H.-S. 1996 Resistencia frente a la infección por el virus de la sharka en plantas de Nicotiana benthamiana transformadas por genes no estructurales del virus PhD thesis Universidad Autónoma de Madrid, Spain:
    [Google Scholar]
  15. Hewlett M. J., Rose J. K., Baltimore D. 1976; 5ʹ-Terminal structure of poliovirus polyribosomal RNA is pUp. Proceedings of the National Academy of Sciences USA: 73327–330
    [Google Scholar]
  16. Jefferson R. A. 1987; Assaying chimeric genes in plants: the gus gene fusion system. Plant Molecular Biology Reporter 5:387–405
    [Google Scholar]
  17. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  18. Kozak M. 1991a; Structural features in eukaryotic mRNAs that modulate the initiation of translation. Journal of Biological Chemistry 266:19867–19870
    [Google Scholar]
  19. Kozak M. 1991b; A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expression 1:111–115
    [Google Scholar]
  20. Laín S., Riechmann J. L., Mendez E., García J. A. 1989; The complete nucleotide sequence of plum pox potyvirus RNA. Virus Research 13:157–172
    [Google Scholar]
  21. Levis C., Astier-Manifacier S. 1993; The 5ʹ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation. Virus Genes 7:367–379
    [Google Scholar]
  22. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. 1987; Selection of AUG initiation codons differs in plants and animals. EMBO Journal 6:43–48
    [Google Scholar]
  23. Merrick W. C. 1992; Mechanism and regulation of eukaryotic protein synthesis. Microbiological Reviews 56:291–315
    [Google Scholar]
  24. Nomoto A., Lee Y. F., Wimmer E. 1976; The 5ʹ end of poliovirus mRNA is not capped with m7G(5ʹ)ppp(5ʹ)Np. Proceedings of the National Academy of Sciences USA: 73375–380
    [Google Scholar]
  25. Nicolaisen M., Johansen E., Poulsen G. B., Borkhardt B. 1992; The 5ʹ untranslated region from pea seedborne mosaic potyvirus RNA as a translational enhancer in pea and tobacco protoplasts. FEBS Letters 303:169–172
    [Google Scholar]
  26. Pelletier J., Sonenberg N. 1988; Internal initiation oftranslation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325
    [Google Scholar]
  27. Riechmann J. L., Laín S., García J. A. 1989; The genome-linked protein and 5ʹ end RNA sequence of plum pox potyvirus. Journal of General Virology 70:2785–2789
    [Google Scholar]
  28. Riechmann J. L., Laín S., García J. A. 1990; Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology 177:710–716
    [Google Scholar]
  29. Riechmann J. L., Laín S., García J. A. 1991; Identification of the initiation codon of plum pox potyvirus genomic RNA. Virology 185:544–552
    [Google Scholar]
  30. Scheper G. C., Voorma H. O., Thomas A. A. M. 1992; Eukaryotic initiation factors-4E and -4F stimulate 5ʹ cap-dependent as well as internal initiation of protein synthesis. Journal of Biological Chemistry 267:7269–7274
    [Google Scholar]
  31. Simón-Buela L., Guo H. S., García J. A. 1997; Long sequences in the 5ʹ noncoding region of plum pox virus are not necessary for viral infectivity but contribute to viral competitiveness and pathogenesis. Virology 233:157–162
    [Google Scholar]
  32. Tacke E., Prüfer D., Salamini F., Rohde W. 1990; Characterization of a potato leafroll luteovirus subgenomic RNA: differential expression by internal translation initiation and UAG suppression. Journal of General Virology 71:2265–2272
    [Google Scholar]
  33. Thach R. E. 1992; Cap recap: The involvement of eIF-4F in regulating gene expression. Cell 68:177–180
    [Google Scholar]
  34. Thomas A. A. M., ten Haar E., Wellink J., Voorma H. O. 1991; Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. Journal of Virology 65:2953–2959
    [Google Scholar]
  35. Timmer R. T., Benkowski L. A., Schodin D., Lax S. R., Metz A. M., Ravel J. M., Browning K. S. 1993; The 5ʹ and 3ʹ untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5ʹ cap structure. Journal of Biological Chemistry 268:9504–9510
    [Google Scholar]
  36. Van den Heuvel J. J., Bergkamp R. J., Planta R. J., Rahue H. A. 1989; Effect of deletions in the 5ʹ-noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Gene 79:83–86
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-10-2691
Loading
/content/journal/jgv/10.1099/0022-1317-78-10-2691
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error