1887

Abstract

The intracellular targeting of recombinant antibodies is an experimental strategy to interfere with the function of selected molecules that is being utilized in a variety of different systems for research and medical applications. Since recombinant antibodies are increasingly being derived from phage display libraries, we have exploited phage technology to isolate, from a large combinatorial library, human antibody fragments directed against human immunodeficiency virustype 1 reverse transcriptase (HIV-1 RT). We describe in this paper the and properties of a neutralizing anti-RT antibody fragment. We demonstrate that the heavy chain domain (VH-CH1) of the phage-derived antibody is able to inhibit the retroviral enzyme, in that it neutralizes the RNA-dependent DNA polymerase activity of HIV-1 RT. TheVH-CH1 antibody fragment also neutralizes the activity of RT of drug-resistant HIV-1 mutants as well as that of murine retrovirus RT. To confirm the broad reactivity of the synthetic antibody fragment, we have assessed the ability of the intracellularly expressed VH-CH1 protein to interfere with murine retroviral infection. To this end, we developed an selection procedure based on the antibody-mediated resistance to a cytotoxic retrovirus and used this selection procedure to rescue, from a heterogeneous population, cells expressing the VH-CH1 antibody fragment. We finally demonstrate that the intracellular expression of the recombinant heavy chain antibody fragment leads to an efficient inhibition of viral retrotranscription by murine-based retrovirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-10-2591
1997-10-01
2022-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/10/9349480.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-10-2591&mimeType=html&fmt=ahah

References

  1. Biocca S., Cattaneo A. 1995; Intracellular antibodies: antibody targeting to subcellular compartments. Trends in Cell Biology 5:248–252
    [Google Scholar]
  2. Biocca S., Neuberger M., Cattaneo A. 1990; Expression and targeting of intracellular antibodies in mammalian cells. EMBO Journal 9:101–108
    [Google Scholar]
  3. Cai X., Garen A. 1996; A melanoma-specific VH antibody cloned from a fusion phage library of a vaccinated melanoma patient. Proceedings of the National Academy of Sciences USA: 936280–6285
    [Google Scholar]
  4. Cattaneo A., Biocca S. 1997 Intracellular Antibodies: Development and Applications Biotechnology Intelligence Unit. Austin, Tx: Landes Bioscience;
    [Google Scholar]
  5. Cosset F.-L., Morling F. J., Takeuchi Y., Weiss R. A., Collins M. K. L., Russel S. J. 1995; Retroviral retargeting by envelopes expressing an N-terminal binding domain. Journal of Virology 69:6314–6322
    [Google Scholar]
  6. Davies J., Riechmann L. 1995; Antibody VH domains as small recognition units. Biotechnology 13:475–479
    [Google Scholar]
  7. De Clerq E. 1994; HIV resistance to reverse transcriptase inhibitors. Biochemical Pharmacology 47:155–169
    [Google Scholar]
  8. Duan L., Bagasra O., Laughlin M. A., Oakes J. W., Pomerantz R. 1994; Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proceedings of the National Academy of Sciences USA: 915075–5079
    [Google Scholar]
  9. Gargano N., Biocca S., Bradbury A., Cattaneo A. 1996; Human recombinant antibody fragments neutralizing HIV-1 reverse transcriptase provide an experimental basis to the structural classification of the DNA polymerase family. Journal of Virology 70:7706–7712
    [Google Scholar]
  10. Georgiadis M. M., Jessen S. M., Ogata C. M., Telesnitsky A., Goff S. P., Hendrickson W. 1995; Mechanistic implication from the structure of a catalytic fragment of Moloney leukemia virus reverse transcriptase. Structure 3:879–892
    [Google Scholar]
  11. Griffiths A. D., Williams S. C., Hartley O., Tomlinson I. M., Waterhouse P., Crosby W., Konterman R., Jones P., Low N. M., Prospero T. D., Hoogenboom H. R., Nissim A., Cox J., Harrison J., Zaccolo M., Gherardi E., Winter G. 1994; Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO Journal 13:3245–3260
    [Google Scholar]
  12. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E., Bendahman N., Hamers R. 1993; Naturally occurring antibodies devoid of light chains. Nature 363:446–448
    [Google Scholar]
  13. Leavit M., Yu M., Wong-Staal F., Looney D. 1996; Ex vivo transduction and expansion of CD4 + lymphocytes from HIV + donors: prelude to a ribozyme gene therapy trial. Gene Therapy 3:599–606
    [Google Scholar]
  14. Maciejeski J. P., Weichold F. F., Young N. S., Cara A., Zella D., Reitz M. S., Gallo R. C. 1995; Intracellular expression of antibody fragments directed against HIV reverse transcriptase prevents HIV infection in vitro. Nature Medicine 1:667–673
    [Google Scholar]
  15. Marasco W. A., Haseltine W. A., Chen S. 1993; Design, intracellular expression, and activity of human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proceedings of the National Academy of Sciences USA: 907889–7893
    [Google Scholar]
  16. Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., Winter G. 1991; By -passing immunization: human antibodies from V-gene libraries displayed on phage. Journal of Molecular Biology 222:581–597
    [Google Scholar]
  17. Mhashilkar A. M., Bagley J., Chen S. Y., Szilvary A. M., Helland D. G., Marasco W. A. 1995; Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies. EMBO Journal 14:1542–1551
    [Google Scholar]
  18. Persic L., Righi M., Roberts A., Hoogenboom H. R., Cattaneo A., Bradbury A. 1997; Targeting vectors for intracellular immunisation. Gene 187:1–8
    [Google Scholar]
  19. Richardson J. H., Marasco W. A. 1995; Intracellular antibodies : development and therapeutic potential. Trends in Biotechnology 13:306–310
    [Google Scholar]
  20. Richman D. D. 1993; HIV drug resistance. Annual Review of Pharmacology and Toxicology 33:149–164
    [Google Scholar]
  21. Ruberti F., Bradbury A., Cattaneo A. 1993; Cloning and expression of an anti-nerve growth factor (NGF) for studies using the neuroantibodies approach. Cell and Molecular Neuroscience 6:559–568
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Shaheen F., Duan L., Zhu M., Bagasra O., Pomerantz R. 1996; Targeting human immunodeficiency type 1 reverse transcriptase by intracellular expression of single-chain variable fragments to inhibit early stage of the viral life cycle. Journal of Virology 70:3392–3400
    [Google Scholar]
  24. Summers M. D., Smith G. E. 1987 A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures Texas Agricultural Experiment Station Bulletin 1555
    [Google Scholar]
  25. Tavladoraki P., Benvenuto E., Trinca S., DeMartinis D., Cattaneo A., Galeffi P. 1993; Transgenic plants expressing a functional single chain Fv antibody are specifically protected from virus attack. Nature 366:469–472
    [Google Scholar]
  26. Vile R., Miller N., Chernajovsky Y., Hart I. 1994; A comparison of the properties of different retroviral vectors containing the murine tyrosinase promoter to achieve transcriptionally targeted expression of the HSVtk or IL-2 genes. Gene Therapy 1:307–316
    [Google Scholar]
  27. Yu M., Poeschla E., Wong-Staal F. 1994; Progress towards gene therapy for HIV infection. Gene Therapy 1:13–26
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-10-2591
Loading
/content/journal/jgv/10.1099/0022-1317-78-10-2591
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error