1887

Abstract

The majority of human endogenous retroviral HERV-H elements in the human genome have large deletions in and lack most of , 5–10% are more or less complete with a potentially immunosuppressive transmembrane protein-encoding region. Spliced HERV-H transcripts were detected in T-cell leukaemia cell lines and lymphocytes from healthy blood donors by using RT-PCR. The transcripts all contained a splice donor in the leader region downstream from the primer-binding site and a previously unreported splice acceptor in the integrase-encoding region of , absent in the HERV-H deletion elements. In singly spliced transcripts the leader and integrase regions were joined directly whereas in multiply spliced transcripts they were joined with an alternative exon from the protease-encoding region located between the two regions. transcripts from three different HERV-H elements were identified: one element similar to a HERV-H consensus sequence was primarily amplified from the T-cell leukaemia cell lines and two other more defective elements were amplified from normal lymphocytes. One of these elements was shown to be a reintegrated spliced transcript where the protease and integrase regions were joined, removing most of but leaving intact. Other spliced transcripts, joining the protease region and the 3′-LTR, were also amplified. The fact that HERV-H elements with an intact splice acceptor also use the splice sites in the protease-encoding region suggests that this unusual multiple splice pattern could have a biological function in the intact HERV-H.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-10-2575
1997-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/10/9349478.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-10-2575&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. Journal of Molecular Biology 215:403–410
    [Google Scholar]
  2. Andersson M.-L., Medstrand P., Yin H., Blomberg J. 1996; Differential expression ofhuman endogenous retroviral sequences similar to mouse mammary tumor virus in normal peripheral blood mononuclear cells. AIDS Research and Human Retroviruses 12:833–840
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  4. Breitbart R. E., Andreadis A., Nadal-Ginard B. 1987; Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annual Review of Biochemistry 56:467–495
    [Google Scholar]
  5. Cianciolo G. J., Hunter J., Silva J., Haskill J. S., Snyderman R. 1981; Inhibitors of monocyte responses to chemotaxins are present in human cancerous effusions and react with monoclonal antibodies to the p15E structural protein of retroviruses. Journal of Clinical Investigation 68:831–844
    [Google Scholar]
  6. Cianciolo G. J., Phipps D., Snyderman R. 1984; Human malignant and mitogen-transformed cells contain retroviral p15E-related antigen. Journal of Experimental Medicine 159:964–969
    [Google Scholar]
  7. Cianciolo G. J., Copeland T. D., Oroszlan S., Snyderman R. 1985; Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230:453–455
    [Google Scholar]
  8. Coffin J. 1985; Genome structure. In Molecular Biology of Tumor Viruses: RNA Tumor Viruses, 2nd edn.. 2 pp 17–73 Weiss R., Teich N., Varmus H., Coffin J. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  9. Felber B. K., Hadzopoulou-Cladaras M., Cladaras C., Copeland T., Pavlakis G. N. 1989; Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proceedings of the National Academy of Sciences USA: 861495–1499
    [Google Scholar]
  10. Feuchter A., Mager D. 1990; Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Research 18:1261–1270
    [Google Scholar]
  11. Franklin G. C., Chretien S., Hanson I. M., Rochefort H., May F. E. B., Westley B. R. 1988; Expression of human sequences related to those of mouse mammary tumor virus. Journal of Virology 62:1203–1210
    [Google Scholar]
  12. Goodchild N. L., Freeman J. D., Mager D. L. 1995; Spliced HERV- H endogenous retroviral sequences in human genomic DNA: evidence for amplification via retrotransposition. Virology 206:164–173
    [Google Scholar]
  13. Hirose Y., Takamatsu M., Harada F. 1993; Presence of env genes in members of the RTVL-H family of human endogenous retrovirus-like elements. Virology 192:52–61
    [Google Scholar]
  14. Johansen T., Holm T., Bjørklid E. 1989; Members of the RTVL-H family of human endogenous retrovirus-like elements are expressed in placenta. Gene 79:259–267
    [Google Scholar]
  15. Kato N., Pfeifer-Ohlsson S., Kato M., Larsson E., Rydnert J., Ohlsson R., Cohen M. 1987; Tissue-specific expression of human provirus ERV3 mRNA in human placenta: two of the three ERV3 mRNAs contain human cellular sequences. Journal of Virology 61:2182–2191
    [Google Scholar]
  16. Katz R. A., Skalka A. M. 1990; Control of retroviral RNA splicing through maintenance of suboptimal processing signals. Molecular and Cellular Biology 10:696–704
    [Google Scholar]
  17. Katz R. A., Skalka A. M. 1994; The retroviral enzymes. Annual Review of Biochemistry 63:133–173
    [Google Scholar]
  18. Kitamura M., Maruyama N., Shirasawa T., Nagasawa R., Watanabe K., Tateno M., Yoshiki T. 1994; Expression of an endogenous retroviral gene product in human placenta. International Journal of Cancer 58:836–840
    [Google Scholar]
  19. Lindeskog M., Medstrand P., Blomberg J. 1993; Sequence variation of human endogenous retrovirus ERV9-related elements in an env region corresponding to an immunosuppressive peptide : transcription in normal and neoplastic cells. Journal of Virology 67:1122–1126
    [Google Scholar]
  20. Linial M. L., Miller A. D. 1990; Retroviral RNA packaging: sequence requirements and implications. Current Topics in Microbiology and Immunology 157:125–152
    [Google Scholar]
  21. Löchelt M., Flügel R. M. 1996; The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. Journal of Virology 70:1033–1040
    [Google Scholar]
  22. Löwer R., Boller K., Hasenmeier B., Korbmacher C., Müller-Lantzsch N., Löwer J., Kurth R. 1993; Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proceedings of the National Academy of Sciences USA: 904480–4484
    [Google Scholar]
  23. Löwer R., Tönjes R. R., Korbmacher C., Kurth R., Löwer J. 1995; Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. Journal of Virology 69:141–149
    [Google Scholar]
  24. Mager D. L., Freeman J. D. 1987; Human endogenous retroviruslike genome with type C pol sequences and gag sequences related to human T-cell lymphotrophic viruses. Journal of Virology 61:4060–4066
    [Google Scholar]
  25. Mager D. L., Freeman J. D. 1995; HERV-H endogenous retroviruses: presence in the New World branch but amplification in the Old World primate lineage. Virology 213:395–404
    [Google Scholar]
  26. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Mann R., Baltimore D. 1985; Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. Journal of Virology 54:401–407
    [Google Scholar]
  28. Mann R., Mulligan R., Baltimore D. 1983; Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159
    [Google Scholar]
  29. Medstrand P., Lindeskog M., Blomberg J. 1992; Expression of human endogenous retroviral sequences in peripheral blood mononuclear cells of healthy individuals. Journal of General Virology 73:2463–2466
    [Google Scholar]
  30. Moore R., Dixon M., Smith R., Peters G., Dickson C. 1987; Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frame-shift suppression events are required for translation of gag and pol . Journal of Virology 61:480–490
    [Google Scholar]
  31. Muesing M. A., Smith D. H., Cabradilla C. D., Benton C. V., Lasky L. A., Capon D. J. 1985; Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 313:450–458
    [Google Scholar]
  32. Rabson A. B., Steele P. E., Garon C. F., Martin M. A. 1983; mRNA transcripts related to full-length endogenous retroviral DNA in human cells. Nature 306:604–607
    [Google Scholar]
  33. Ruegg C. L., Monell C. R., Strand M. 1989; Identification, using synthetic peptides, of the minimum amino acid sequence from the retroviral transmembrane protein p15E required for inhibition of lymphoproliferation and its similarity to gp21 of human T-lymphotropic virus types I and II. Journal of Virology 63:3250–3256
    [Google Scholar]
  34. Sauter M., Schommer S., Kremmer E., Remberger K., Dölken G., Lemm I., Buck M., Best B., Neumann-Haefelin D., Mueller-Lantzsch N. 1995; Human endogenous retrovirus K10: expression of Gag protein and detection of antibodies in patients with seminomas. Journal of Virology 69:414–421
    [Google Scholar]
  35. Seiki M., Hikikoshi A., Taniguchi T., Yoshida M. 1985; Expression of the pX gene of HTLV-I : general splicing mechanism in the HTLV family. Science 228:1532–1534
    [Google Scholar]
  36. Shapiro M. B., Senapathy P. 1987; RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Research 15:7155–7174
    [Google Scholar]
  37. Sonigo P., Barker C., Hunter E., Wain-Hobson S. 1986; Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus. Cell 45:375–385
    [Google Scholar]
  38. Venables P. J. W., Brookes S. M., Griffiths D., Weiss R. A., Boyd M. T. 1995; Abundance of an endogenous retroviral envelope protein in placental trophoblasts suggests a biological function. Virology 211:589–592
    [Google Scholar]
  39. Wang J.-M., Cianciolo G. J., Snyderman R., Mantovani A. 1986; Coexistence of a chemotactic factor and a retroviral p15E-related chemotaxis inhibitor in human tumor cell culture supernatants. Journal of Immunology 137:2726–2732
    [Google Scholar]
  40. Wilkinson D. A., Freeman J. D., Goodchild N. L., Kelleher C. A., Mager D. L. 1990; Autonomous expression of RTVL-H endogenous retrovirus-like elements inhuman cells. JournalofVirology 64:2157–2167
    [Google Scholar]
  41. Wilkinson D. A., Goodchild N. L., Saxton T. M., Wood S., Mager D. L. 1993; Evidence for a functional subclass of the RTVL-H family of human endogenous retrovirus-like sequences. Journal of Virology 67:2981–2989
    [Google Scholar]
  42. Wilkinson D. A., Mager D. L., Leong J. C. 1994; Endogenous human retroviruses. In The Retroviridae 3 pp 465–535 Levy J. Edited by New York: Plenum Press;
    [Google Scholar]
  43. Yu S. F., Baldwin D. N., Gwynn S. R., Yendapalli S., Linial M. L. 1996; Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579–1582
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-10-2575
Loading
/content/journal/jgv/10.1099/0022-1317-78-10-2575
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error