1887

Abstract

Recently, the presence of human immunodeficiency virus type 1 (HIV-1) RNA transcripts with negative- strand polarity has been shown in tissue culture models of acute and persistently infected cells. One of these transcripts encodes a 189 amino acid open reading frame. This highly conserved antisense sequence is complementary to the structured Rev-responsive element and extends through the cleavage site of the Env protein. We tested the ability of this antisense RNA to modulate HIV-1 replication and the mRNA profile when expressed stably or transiently in several cell types. Different cell lines and PBLs were transduced by retroviral vectors producing antisense RNA and were then challenged by HIV infection. We have shown that the endogenously expressed antisense RNA containing the natural open reading frame inhibits HIV-1 and HIV-1 replication in these cells. The level of inhibition varied according to the cells, but was significant in all cases. The production of HIV-1 (BRU, IIIB, NDK) mRNAs was also significantly decreased. HIV-2 replication was not inhibited by expression of the antisense RNA. Our results also suggest that this inhibitory effect is due to the antisense RNA and not to the protein which is encoded by this sequence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-10-2503
1997-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/10/9349471.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-10-2503&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Kingston R. E. 1987 Current Protocols in Molecular Biology New York: John Wiley;
    [Google Scholar]
  2. Baltimore D. 1988; Gene therapy. Intracellular immunization. Nature 335:395–396
    [Google Scholar]
  3. Charneau P., Alizon M., Clavel F. 1992; A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. Journal of Virology 66:2814–2820
    [Google Scholar]
  4. Chuah M. K., Vandendriessche T., Chang H. K., Ensoli B., Morgan R. A. 1994; Inhibition of human immunodeficiency virus type-1 by retroviral vectors expressing antisense-TAR. Human Gene Therapy 5:1467–1475
    [Google Scholar]
  5. Churchill M. J., Moore J. L., Rosenberg M., Brighty D. W. 1996; The rev-responsive element negatively regulates human immunodeficiency virus type 1 env mRNA expression in primate cells. Journal of Virology 70:5786–5790
    [Google Scholar]
  6. Clavel F., Charneau P. 1994; Fusion from without directed by human immunodeficiency virus particles. Journal of Virology 68:1179–1185
    [Google Scholar]
  7. Coleman J., Green P. J., Inouye M. 1984; The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell 37:429–436
    [Google Scholar]
  8. Danos O., Mulligan R. C. 1988; Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proceedings of the National Academy of Sciences USA: 856460–6464
    [Google Scholar]
  9. Dragic T., Charneau P., Clavel F., Alizon M. 1992; Complementation of murine cells for human immunodeficiency virus envelop/CD4- mediated fusion in human/murine heterokaryons. Journal of Virology 66:4794–4802
    [Google Scholar]
  10. Duan L., Oakes J. W., Ferraro A., Bagasra O., Pomerantz R. J. 1994; Tat and Rev differentially affect restricted replication of human immunodeficiency virus type 1 in various cells. Virology 199:474–478
    [Google Scholar]
  11. Eglitis M. A., Anderson W. F. 1988; Retroviral vectors for introduction of genes into mammalian cells. Biotechniques 6:608–614
    [Google Scholar]
  12. Ellerbrok H., Serpente N., Pancino G., Vanhée C., D’Auriol L., Sitbon M., Vaquero C. 1993; Sequences in the REV-responsive element responsible for premature translational arrest in the HIV-1 envelope. European Journal of Biochemistry 216:459–467
    [Google Scholar]
  13. Folks T., Benn S., Rabson A., Theodore T., Hoggan M. D., Martin M., Lightfoote M., Sell K. 1985; Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proceedings of the National Academy of Sciences USA: 824539–4543
    [Google Scholar]
  14. Folks T. M., Justement J., Kinter A., Schnittman S., Orenstein J., Poli G., Fauci A. S. 1988; Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. Journal of Immunology 140:1117–1122
    [Google Scholar]
  15. Garcia J. V., Miller A. D. 1994; Retrovirus vector-mediated transfer of functional HIV-1 regulatory genes. Aids Research and Human Retroviruses 10:47–52
    [Google Scholar]
  16. Hemsley A., Arnheim N., Toney M. D., Cortopassi G., Galas D. J. 1989; A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Research 17:6545–6551
    [Google Scholar]
  17. Holland S. M., Ahmad N., Maitra R. K., Wingfield P., Venkatesan S. 1990; Human immunodeficiency virus Rev protein recognizes a target sequence in Rev-responsive element RNA within the context of RNA secondary structure. Journal of Virology 64:5966–5975
    [Google Scholar]
  18. Inouye M. 1988; Antisense RNA: its functions and applications in gene regulation - a review. Gene 72:25–34
    [Google Scholar]
  19. Izant J. G., Weintraub H. 1984; Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36:1007–1015
    [Google Scholar]
  20. Kim J. H., McLinden R. J., Mosca J. D., Vahey M. T., Greene W. C., Redfield R. R. 1996; Inhibition of HIV replication by sense and antisense rev response elements in HIV-based retroviral vectors. Journal of Acquired Immune Deficiency Syndrome and Human Retrovirology 12:343–351
    [Google Scholar]
  21. Lisziewicz J., Sun D., Lisziewicz A., Gallo R. C. 1995; Antitat gene therapy: a candidate for late-stage AIDS patients. Gene Therapy 2:218–222
    [Google Scholar]
  22. Malim M. H., Tiley L. S., McCarn D. F., Rusche J. R., Hauber J., Cullen B. R. 1990; HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60:675–683
    [Google Scholar]
  23. Michael N. L., Vahey M. T., D’Arcy L., Ehrenberg P. K., Mosca J. D., Rappaport J., Redfield R. R. 1994; Negative-strand RNA transcripts are produced in human immunodeficiency virus type 1-infected cells and patients by a novel promoter downregulated by Tat. Journal of Virology 68:979–987
    [Google Scholar]
  24. Miller R. H. 1988; Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science 239:1420–1422
    [Google Scholar]
  25. Miller A. D., Rosman G. J. 1989; Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–990
    [Google Scholar]
  26. Morgenstern J. P., Land H. 1990; Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Research 18:3587–3596
    [Google Scholar]
  27. Nellen W., Lichtenstein C. 1993; What makes an mRNA anti-sense- itive?. Trends in Biochemical Science 18:419–423
    [Google Scholar]
  28. Olsen H. S., Nelbock P., Cochrane A. W., Rosen C. A. 1990; Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science 247:845–848
    [Google Scholar]
  29. Palmer T. D., Thompson A. R., Miller D. 1989; Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B. Blood 73:438–445
    [Google Scholar]
  30. Pestka S., Daugherty B. L., Jung V., Hotta K., Pestka R. K. 1984; Anti-mRNA: specific inhibition of translation of single mRNA molecules. Proceedings of the National Academy of Sciences USA: 817525–7528
    [Google Scholar]
  31. Purcell D. F., Broscius C. M., Vanin E. F., Buckler C. E., Nienhuis A. W., Martin M. A. 1996; An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. Journal of Virology 70:887–897
    [Google Scholar]
  32. Rhodes A., James W. 1990; Inhibition of human immunodeficiency virus replication in cell culture by endogenously synthesized antisense RNA. Journal of General Virology 71:1965–1974
    [Google Scholar]
  33. Rhodes A., James W. 1991; Inhibition of heterologous strains of HIV by antisense RNA. AIDS 5:145–151
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sczakiel G., Oppenlander M., Rittner K., Pawlita M. 1992; Tat- and Rev-directed antisense RNA expression inhibits and abolishes replication of human immunodeficiency virus type 1 : a temporal analysis. Journal of Virology 66:5576–5581
    [Google Scholar]
  36. Serpente N., Sitbon M., Vaquero C. 1992; suboptimal and optimal activation signals modulate differently the expression of HIV-1 and cytokine genes. Biochemical and Biophysical Research Communications 182:1172–1179
    [Google Scholar]
  37. Sun L. Q., Pyati J., Smythe J., Wang L., Macpherson J., Gerlach W., Symonds G. 1995; Resistance to human immunodeficiency virus type 1 infection conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs. Proceedings of the National Academy of Sciences USA: 927272–7276
    [Google Scholar]
  38. Vandendriessche T., Chuah M. K., Chiang L., Chang H. K., Ensoli B., Morgan R. A. 1995; Inhibition of clinical human immunodeficiency virus (HIV) type 1 isolates in primary CD4 + T lymphocytes by retroviral vectors expressing anti-HIV genes. Journal of Virology 69:4045–4052
    [Google Scholar]
  39. Vanhée B. C., Thoreau H., Serpente N., D’Auriol L., Levy J. P., Vaquero C. 1995; A natural antisense RNA derived from the HIV-1 env gene encodes a protein which is recognized by circulating antibodies of HIV + individuals. Virology 206:196–202
    [Google Scholar]
  40. VanSlyke J. K., Franke C. A., Hruby D. E. 1991; Proteolytic maturation of vaccinia virus core proteins: identification of a conserved motif at the N termini of the 4 b and 25 K virion proteins. Journal of General Virology 72:411–416
    [Google Scholar]
  41. Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Axel R. 1979; Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16:777–785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-10-2503
Loading
/content/journal/jgv/10.1099/0022-1317-78-10-2503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error