Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. Free

Abstract

Phylogenetic analysis of the sequence of the H gene of 75 measles virus (MV) strains (32 published and 43 new sequences) was carried out. The lineage groups described from comparison of the nucleotide sequences encoding the C-terminal regions of the N protein of MV were the same as those derived from the H gene sequences in almost all cases. The databases document a number of distinct genotype switches that have occurred in Madrid (Spain). Well-documented is the complete replacement of lineage group C2, the common European genotype at that time, with that of group D3 around the autumn of 1993. No further isolations of group C2 took place in Madrid after this time. The rate of mutation of the H gene sequences of MV genotype D3 circulating in Madrid from 1993 to 1996 was very low (5 × 10 per annum for a given nucleotide position). This is an order of magnitude lower than the rates of mutation observed in the HN genes of human influenza A viruses. The ratio of expressed over silent mutations indicated that the divergence was not driven by immune selection in this gene. Variations in amino acid 117 of the H protein (F or L) may be related to the ability of some strains to haemagglutinate only in the presence of salt. Adaptation of MV to different primate cell types was associated with very small numbers of mutations in the H gene. The changes could not be predicted when virus previously grown in human B cell lines was adapted to monkey Vero cells. In contrast, rodent brain-adapted viruses displayed a lot of amino acid sequence variation from normal MV strains. There was no convincing evidence for recombination between MV genotypes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-1-97
1997-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/1/9010291.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-1-97&mimeType=html&fmt=ahah

References

  1. Alkhatib G., Briedis D. J. 1986; The predicted primary structure of the measles virus hemagglutinin. Virology 150:479–490
    [Google Scholar]
  2. Baczko K., Brinckmann U., Pardowitz I., Rima B. K., ter Meulen V. 1991; Nucleotide sequences of the genes encoding the matrix protein of two wild-type measles virus strains. Journal of General Virology 72:2279–2282
    [Google Scholar]
  3. Baczko K., Lampe J., Liebert U. G., terMeulen V., Pardowitz I., Budka H., Cosby S. L., Isserte S., Rima B. K. 1993; Clonal expansion of hypermutated measles virus in an SSPE brain. Virology 197:188–195
    [Google Scholar]
  4. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265
    [Google Scholar]
  5. Cattaneo R., Schmid A., Spielhofer P., Kaelin K., Baczko K., ter Meulen V., Pardowitz I., Flanagan S., Rima B. K., Udem S. A., Billeter M. A. 1989; Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology 173:415–425
    [Google Scholar]
  6. Domingo E., Holland J. J. 1994; Mutation rates and rapid evolution of RNA viruses. In The Evolutionary Biology of Viruses pp 161–184 Morse S. Edited by New York: Raven Press;
    [Google Scholar]
  7. Dörig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305
    [Google Scholar]
  8. Dunster L. M., Schneider-Schaulies J., Löffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V. 1994; Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology 198:265–274
    [Google Scholar]
  9. Gerald C., Buckland R., Barker R., Freeman G., Wild T. F. 1986; Measles virus haemagglutinin gene: cloning, complete nucleotide sequence analysis and expression in COS cells. Journal of General Virology 67:2695–2703
    [Google Scholar]
  10. Griffin D. E., Bellini W. J. 1996; Measles virus. In Fields Virology, 3rd edn. pp 1267–1312 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lipincott-Raven;
    [Google Scholar]
  11. Hu A., Sheshbaradaran H., Norrby E., Kövamees J. 1993; Molecular characterisation of epitopes on the measles virus haemag- glutinin protein. Virology 192:351–354
    [Google Scholar]
  12. Hummel K. B., Vanchiere J. A., Bellini W. J. 1994; Restriction of fusion protein mRNA as a mechanism of measles virus persistence. Virology 202:665–672
    [Google Scholar]
  13. Komase K., Haga T., Yoshikawa Y., Santo T. A., Yamanouchi K. 1990; Molecular analysis of structural protein genes of the Yamagata- 1 strain of defective subacute sclerosing panencephalitis virus. III. Nucleotide sequence of the hemagglutinin gene. Virus Genes 4:163–172
    [Google Scholar]
  14. Liebert U. G., Flanagan S. G., Löffler S., Baczko K., ter Meulen V., Rima B. K. 1994; Antig enic determinants of measles virus hemagglutinin associated with neurovirulence. Journal of Virology 68:1486–1493
    [Google Scholar]
  15. Mori T., Sasaki H., Hashimoto H., Makino S. 1993; Molecular cloning and complete nucleotide sequence of genomic RNA of the AIK- C strain of attenuated measles virus. Virus Genes 7:67–81
    [Google Scholar]
  16. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology 67:6025–6032
    [Google Scholar]
  17. Outlaw M. C., Pringle C. R. 1996; Sequence variation within an outbreak of measles virus in the Coventry area during spring/summer 1993. Virus Research 39:3–12
    [Google Scholar]
  18. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned DNA. EMBO Journal 14:5773–5783
    [Google Scholar]
  19. Rima B. K., Earle J. A. P., Yeo R. P., Herlihy L., Baczko K., ter Meulen V., Carabaña J., Caballero M., Celma M. L., Fernandez-Muñoz R. 1995a; Temporal and geographical distribution of measles virus genotypes. Journal of General Virology 76:1173–1180
    [Google Scholar]
  20. Rima B. K., Earle J. A. P., Baczko K., Rota P. A., Bellini W. J. 1995b; Measles virus strain variations. Current Topics in Microbiology and Immunology 191:65–83
    [Google Scholar]
  21. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of wild-type strains of measles virus isolated from recent epidemics. Virology 188:135–142
    [Google Scholar]
  22. Rota J. S., Wang Z.-D., Rota P. A., Bellini W. J. 1994; Comparison of sequences of the H, F and N coding genes of measles virus vaccine strains. Virus Research 31:317–330
    [Google Scholar]
  23. Rota P. A., Rota J. S., Bellini W. J. 1995; Molecular epidemiology of measles virus. Seminars in Virology 6:379–386
    [Google Scholar]
  24. Rota J. S., Heath J. L., Rota P. A., King G. E., Celma M. L., Carabaña R., Fernandez-Muñoz R., Brown D., Jin L., Bellini W. J. 1996; Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. Journal of Infectious Diseases 173:32–37
    [Google Scholar]
  25. Sakaguchi M., Yoshikawa Y., Yamanouchi K., Takeda K., Sato T. 1986; Characteristics of fresh isolates of wild type measles virus. Japanese Journal of Experimental Medicine 56:61–67
    [Google Scholar]
  26. Sakaguchi T., Toyoda T., Gotoh B., Inocencio N. M., Kuma K., Miyata T., Nagai Y. 1989; Newcastle disease virus evolution. I. Multiple lineages defined by sequence variability of the hemagglutinin- neuraminidase gene. Virology 169:260–272
    [Google Scholar]
  27. Schneider-Schaulies J., Dunster L. M., Kobune F., Rima B., ter Meulen V. 1995; Differential down regulation of CD46 by measles virus strains. Journal of Virology 69:7257–7259
    [Google Scholar]
  28. Schneider-Schaulies J., Schnor J. J., Schlender J., Dunster L. M., Schneider-Schaulies S., ter Meulen V. 1996; Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus infected cells. Journal of Virology 70:255–263
    [Google Scholar]
  29. Schulz T. F., Hoad J. G., Whitby D., Tizard E. J., Dillon M. J., Weiss R. A. 1992; A measles isolate from a child with Kawasaki disease: sequence comparison with contemporaneous isolates from 'classical' cases. Journal ofGeneral Virology 73:1581–1586
    [Google Scholar]
  30. Shibahara K., Hotta H., Katayama Y., Homma M. 1994; Increased binding activity of measles virus to monkey red blood cells after longterm passage in Vero cell cultures. Journal of General Virology 75:3511–3516
    [Google Scholar]
  31. Shirodaria P. V., Dermott E., Gould E. A. 1976; Some characteristics of salt-dependent haemagglutinating measles viruses. Journal of General Virology 33:107–115
    [Google Scholar]
  32. Tamin A., Rota P. A., Wang Z., Heath J. L., Anderson L. J., Bellini W. J. 1994; Antigenic analysis of current wild type and vaccine strains of measles virus. Journal of Infectious Diseases 170:795–801
    [Google Scholar]
  33. Taylor M. J., Godfrey E., Baczko K., ter Meulen V., Wild T. F., Rima B. K. 1991; Identification of several different lineages of measles virus. Journal of General Virology 72:83–88
    [Google Scholar]
  34. van Wyke Coelingh K. L., Winter C. C., Murphy B. R. 1988; Nucleotide and deduced amino acid sequence of hemagglutinin- neuraminidase genes of human type 3 parainfluenza virus isolated from 1957 to 1983. Virology 162:137–143
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-1-97
Loading
/content/journal/jgv/10.1099/0022-1317-78-1-97
Loading

Data & Media loading...

Most cited Most Cited RSS feed