1887

Abstract

The activity of HIV-1 proteinase (PR) was analysed in the baculovirus expression system, using eight different constructs of the gene under the control of polyhedrin (PH) promoters of various strengths. None of the active PRs was expressed in substantial quantities, and only PH-fused and/or non-functional PR mutants accumulated in high amounts in insect cells. However, enough PR activity was generated from a lengthened PR construct in insect cells to process Gag polyprotein substrate co-expressed in the same cells in . Fusion of the first 58 residues from the PH sequence to the PR N terminus did not significantly change its activity and specificity of cleavage of the Gag substrate. When analysed under mild denaturing conditions, PH-fused or unfused full-length PR point mutants, as well as PH-fused or unfused C-terminal deletion mutants, showed a propensity to multimerize, with a predominant occurrence of dimers. The incorporation of PR into Gag particles was studied using eight Gag-PR fusion constructs, all containing a non-functional PR mutant. The PR domain was fused to the C-terminal p6 domain of Gag (p6), or translated in frame with NCp7 (as in frameshifted Gag-Pol polyprotein) and followed by downstream sequences of increasing lengths from the Pol domain or the bacterial -galactosidase. The results suggested that the presence of the p6 domain was detrimental to the encapsidation of polyprotein-embedded PR.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-1-131
1997-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/1/9010296.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-1-131&mimeType=html&fmt=ahah

References

  1. Arrigo S. J., Huffman K. 1995; Potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication by inducible expression of HIV-1 PR multimers. Journal of Virology 69:5988–5994
    [Google Scholar]
  2. Borman A. M., Paulous S., Clavel F. 1996; Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. Journal of General Virology 77:419–426
    [Google Scholar]
  3. Boulanger P., Jones I. 1996; Use of heterologous expression systems to study retroviral morphogenesis. Current Topics in Microbiology and Immunology 214:237–259
    [Google Scholar]
  4. Cann A. J., Karn J. 1989; Molecular biology of HIV : new insights into the virus cycle. AIDS 3:S19–S34
    [Google Scholar]
  5. Carrière C., Gay B., Chazal N., Morin N., Boulanger P. 1995; Sequence requirement for encapsidation of deletion mutants and chimeras of human immunodeficiency virus type 1 Gag precursor into retrovirus-like particles. Journal of Virology 69:2366–2377
    [Google Scholar]
  6. Chazal N., Carrière C., Gay B., Boulanger P. 1994; Phenotypic characterization of insertion mutants of the human immunodeficiency virus type 1 Gag precursor expressed in recombinant baculovirus- infected cells. Journal of Virology 68:111–122
    [Google Scholar]
  7. Chazal N., Gay B., Carrière C., Tournier J., Boulanger P. 1995; Human immunodeficiency virus type 1 MA deletion mutants expressed in baculovirus-infected cells: cis and trans effects on the Gag precursor assembly pathway. Journal of Virology 69:365–375
    [Google Scholar]
  8. Debouck C. 1995; The HIV-1 protease as a therapeutic target for AIDS. AIDS Research and Human Retroviruses 8:153–164
    [Google Scholar]
  9. Fontenot G., Johnston K., Cohen J. C., Gallaher W. R., Robinson J., Luftig R. B. 1992; PCR amplification of HIV-1 proteinase sequences directly from lab isolates allow determination of five conserved domains. Virology 190:1–10
    [Google Scholar]
  10. Henderson L. E., Bowers M. A., Sowder R. C.II Serabyn S. A., Johnson D. G., Bess J. W., Arthur L. O., Bryant D. K., Fenselau C. 1992; Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1 : posttranslational modifications, proteolytic processing, and complete amino acid sequences. Journal of Virology 66:1856–1865
    [Google Scholar]
  11. Hong S. S., Boulanger P. 1993; Self-assembly-defective dominant mutants of HIV-1 gag phenotypically expressed in baculovirus-infected cells. Journal of Virology 67:2787–2798
    [Google Scholar]
  12. Hostomsky Z., Appelt K., Ogeden R. 1989; High-level expression of self-processed protease in Escherichia coli using a synthetic gene. Biochemical and Biophysical Research Communications 161:1056–1063
    [Google Scholar]
  13. Huang M., Orenstein J. M., Martin M. A., Freed E. O. 1995; P6Gag is required for particle production from full-length human immunode?ciency virus type 1 molecular clones expressing protease. Journal of Virology 69:6810–6818
    [Google Scholar]
  14. Hughes B. P., Booth T. F., Belyaev A. S., Mcilroy D., Jowett J., Roy P. 1993; Morphogenic capabilities of human immunodeficiency virus type 1 Gag and gag-pol proteins in insect cells. Virology 193:242–255
    [Google Scholar]
  15. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988; Characterization of ribosomal frame-shift in HIV- 1 gag-pol expression. Nature 331:280–283
    [Google Scholar]
  16. Kaplan A. H., Zack J. A., Knigge M., Paul D. A., Kempf D. J., Norbeck D. W., Swanstrom R. 1993; Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. Journal of Virology 67:4050–4055
    [Google Scholar]
  17. Karacostas V., Wolffe E. J., Nagashima K., Gonda M. A., Moss B. 1993; Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193:661–671
    [Google Scholar]
  18. Katoh I., Ikawa Y., Yoshinaka Y. 1989; Retroviral protease characterized as a dimeric aspartic proteinase. Journal of Virology 63:2226–2232
    [Google Scholar]
  19. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A. F., Scolnick E. M., Sigal I. S. 1988; Active immunodeficiency virus protease is required for viral infectivity. Proceedings of the National Academy of Sciences USA: 854686–4690
    [Google Scholar]
  20. Konvalinka J., Litterst M. A., Welker R., Kottler H., Rippmann F., Heuser A.-M., Kraüsslich H.-G. 1995; An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. Journal of Virology 69:7180–7186
    [Google Scholar]
  21. Kraüsslich H.-G. 1991; Human immunodeficiency virus proteinase dimer as a component of the viral polyprotein prevents particle assembly and viral infectivity. Proceedings of the National Academy of Sciences USA: 883213–3217
    [Google Scholar]
  22. Kraüsslich H.-G. 1992; Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single-chain proteinase dimer and restores particle formation. Journal of Virology 66:567–572
    [Google Scholar]
  23. Kraüsslich H.-G., Ochsenbauer C., Traenckner A.-M., Mergener K., Fäcke M., Gelderblom H. R., Bosch V. 1993; Analysis of protein expression and virus-like particle formation in mammalian cell lines stably expressing HIV-1 gag and env gene products with or without active HIV- 1 proteinase. Virology 192:605–617
    [Google Scholar]
  24. Kraüsslich H.-G., Wimmer E. 1988; Viral proteinases. Annual Review of Biochemistry 57:701–754
    [Google Scholar]
  25. Loeb D. D., Swanstrom R., Everitt E., Manchester M, Hutchison C. A.III 1989; Complete protease. Nature 340:397–400
    [Google Scholar]
  26. Luckow V. A., Summers M. D. 1989; High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology 170:31–39
    [Google Scholar]
  27. Madisen L., Travis B., Hu S.-L., Purchio A. F. 1987; Expression of the human immunodeficiency virus gag gene in insect cells. Virology 158:248–250
    [Google Scholar]
  28. Ménard A., Mamoun R. Z., Geoffre S., Castroviejo M., Raymond S., Precigoux G., Hospital M., Guillemain B. 1993; Bovine leukemia virus: purification and characterization of the aspartic protease. Virology 193:680–689
    [Google Scholar]
  29. Miller M., Jaskolski M., Rao J. K. M., Leis J., Wlodawer A. 1989; Crystal structure of retroviral protease proves relationship to aspartic protease family. Nature 227:576–579
    [Google Scholar]
  30. Overton H. A., Fujii Y., Price I. R., Jones I. M. 1989; The protease and gag gene of the human immunodeficiency virus : authentic cleavage and post-translational modification in an insect cell expression system. Virology 170:107–116
    [Google Scholar]
  31. Park J., Morrow C. D. 1991; Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. Journal of Virology 65:5111–5117
    [Google Scholar]
  32. Park J., Morrow C. D. 1993; Mutations in the protease gene of human immunodeficiency virus type 1 affect release and stability of virus particles. Virology 194:843–850
    [Google Scholar]
  33. Peng C., Ho B. K., Chang T. W., Chang N. T. 1989; Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. Journal of Virology 63:2550–2556
    [Google Scholar]
  34. Rivière Y., Blank V., Kourilsky P., Israël A. 1991; Processing of the precursor of NF-kB by the HIV-1 protease during acute infection. Nature 350:625–626
    [Google Scholar]
  35. Rosé J. R., Babé L. M., Craik C. S. 1995; Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. Journal of Virology 69:2751–2758
    [Google Scholar]
  36. Royer M. 1993 Propriétés des proteines Gag et Gag-Pol et activité de proteases recombinantes du virus HIV-1 dans le système baculovirus-cellules d’insecte PhD thesis University of Montpellier, France:
    [Google Scholar]
  37. Royer M., Cerutti M., Gay B., Hong S. S., Devauchelle G., Boulanger P. 1991; Functional domains of HIV-1 gag-polyprotein expressed in baculovirus-infected cells. Virology 184:417–422
    [Google Scholar]
  38. Royer M., Hong S. S., Gay B., Cerrutti M., Boulanger P. 1992; Expression and extracellular release of human immunodeficiency virus type 1 Gag precursors by recombinant baculovirus-infected cells. Journal of Virology 66:3230–3235
    [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA: 745463–5467
    [Google Scholar]
  40. Shioda T., Shibuta H. 1990; Production of human immunodeficiency virus (HlV)-like particles from cells infected with recombinant vaccinia virus carrying the gag gene of HIV. Virology 175:139–148
    [Google Scholar]
  41. Shoeman R. L., Höner B., Stoller T. J., Kesselmeier C., Miedel M. C., Traub P., Graves M. C. 1990; Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin and glial fibrillary acidic protein. Proceedings of the National Academy of Sciences USA: 876336–6340
    [Google Scholar]
  42. Sommerfelt M. A., Roberts C. R., Hunter E. 1993; Expression of simian type D retroviral (Mason-Pfizer monkey virus) capsids in insect cells using recombinant baculovirus. Virology 192:298–306
    [Google Scholar]
  43. Stewart L., Vogt V. M. 1994; Proteolytic cleavage at the Gag-Pol junction in avian leukosis virus : differences in vitro and in vivo. Virology 204:45–59
    [Google Scholar]
  44. Valverde V., Lemay P., Masson J.-M., Gay B., Boulanger P. 1992; Autoprocessing of the human immunodeficiency virus type 1 protease precursor expressed in Escherichia coli from a synthetic gene. Journal of General Virology 73:639–651
    [Google Scholar]
  45. Vogt V. M. 1996; Proteolytic processing and particle maturation. Current Topics in Microbiology and Immunology 214:95–131
    [Google Scholar]
  46. Wills J. W. 1989; Retro-secretion of recombinant proteins. Nature 340:323–324
    [Google Scholar]
  47. Wills J. W., Craven R. C. 1991; Form, function, and use of retroviral Gag proteins. AIDS 5:639–654
    [Google Scholar]
  48. Wilson W., Braddock M., Adams S. E., Rathjen P. D., Kingsman S. M., Kingsman A. J. 1988; HIV expression strategies : ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell 55:1159–1169
    [Google Scholar]
  49. Wlodawer A., Erickson E. 1993; Structure-based inhibitors of HIV- 1 protease. Annual Review of Biochemistry 62:543–585
    [Google Scholar]
  50. Zybarth G., Carter C. 1995; Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. Journal of Virology 69:3878–3884
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-1-131
Loading
/content/journal/jgv/10.1099/0022-1317-78-1-131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error