1887

Abstract

tsBN2, a temperature-sensitive (ts) growth mutant of the hamster cell line BHK-21, has a point mutation in the (regulator of chromosome condensation) gene, and prematurely enters mitosis at 39.5°C, a nonpermissive temperature. In this mutant at 39.5°C infectious progeny of herpes simplex virus type 1 (HSV-1) was not produced and replication of HSV-1 DNA was inhibited. HSV-1 DNA from virus particles is normally circularized upon infection, and circularized HSV-1 DNA molecules can serve as template for DNA replication. In tsBN2 at 39.5°C, HSV-1 DNA appeared to remain linear after infection, suggesting the obstruction of HSV-1 DNA circularization, which could account for failure of HSV-1 DNA replication. In transient replication assays performed in tsBN2 at 39.5°C, through superinfection with HSV-1 helper virus, there was no evidence of replication of circular DNA of the hybrid plasmid containing the HSV-1 replication origin. Production of mRNAs of HSV-1 early genes required for HSV-1 DNA replication was decreased in tsBN2 at 39.5°C. Therefore, RCC1 was assumed to be involved in the formation of an HSV-1 DNA configuration suitable for replication (that is circularization) and the supply of proteins required for replication of the circularized HSV-1 DNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-9-2261
1996-09-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/9/JV0770092261.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-9-2261&mimeType=html&fmt=ahah

References

  1. Anai M., Hirahashi H., Takagi Y. 1970; A deoxyribonuclease which requires nucleoside triphosphate from Micrococcus lysodeikticus . journal of Biological Chemistry 245:767–774
    [Google Scholar]
  2. Cunningham C., Davison A. J. 1993; A cosmid-based system for constructing mutants of herpes simplex virus type I. Virology 197:116–124
    [Google Scholar]
  3. Dalrymple M. A., McGeoch D. J., Davison A. J., Preston C. R. 1985; DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Research 13:7865–7879
    [Google Scholar]
  4. Dasso M. 1993; RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles. Trends in Biochemical Sciences 18:96–101
    [Google Scholar]
  5. Dasso M., Seki T., Azuma Y., Ohba T., Nishimoto T. 1994; A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO Journal 13:5732–5744
    [Google Scholar]
  6. DeLuca N. A., McCarthy A. M., Schaffer P. A. 1985; Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. Journal of Virology 56:558–570
    [Google Scholar]
  7. Garber D. A., Beverley S. M., Coen D. M. 1993; Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 197:459–462
    [Google Scholar]
  8. Jamieson D. R. S., Robinson L. H., Daksis J. I., Nicholl M. J., Preston C. M. 1995; Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus type 1 Vmw65 mutants. Journal of General Virology 76:1417–1431
    [Google Scholar]
  9. Locker H., Frenkel N. 1979; Bam I, Kpn I, and Sal I restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. Journal of Virology 32:429–441
    [Google Scholar]
  10. McCarthy A. M., McMahan L., Schaffer P. A. 1989; Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. Journal of Virology 63:18–27
    [Google Scholar]
  11. McGeoch D. J., Dolan A., Donald S., Brauer D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  12. Mocarski E. S., Roizman B. 1982; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97
    [Google Scholar]
  13. Nakashima T., Sekiguchi T., Kuraoka A., Fukushima K., Shibata Y., Komiyama S., Nishimoto T. 1993; Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Molecular and Cellular Biology 13:6367–6374
    [Google Scholar]
  14. Nishimoto T., Basilico C. 1978; Analysis of a method for selecting temperature-sensitive mutants of BHK cells. Somatic Cell Genetics 4:323–340
    [Google Scholar]
  15. Nishimoto T., Raskas H. J., Basilico C. 1975; Temperature-sensitive cell mutations that inhibit adenovirus 2 replication. Proceedings of the National Academy of Sciences, USA 72:323–332
    [Google Scholar]
  16. Nishimoto T., Eilen E., Basilico C. 1978; Premature chromosome condensation in a ts DNA mutant of BHK cells. Cell 15:475–483
    [Google Scholar]
  17. Nishitani H., Goto H., Kaneda S., Yamao F., Seno T., Handley P., Schwartz A. L., Nishimoto T. 1992; tsBN75 and tsBN423, temperature-sensitive X-linked mutants of the BHK21 cell line, can be complemented by the ubiquitin-activating enzyme E1 cDNA. Biochemical and Biophysical Research Communications 184:1015–1021
    [Google Scholar]
  18. Ohtsubo M., Okazaki H., Nishimoto T. 1989; The RCCl protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. Journal of Cell Biology 109:1389–1397
    [Google Scholar]
  19. Pellett P. E., McKnight J. L. C., Jenkins F. J., Roizman B. 1985; Nucleotide sequence and predicted amino acid sequence of a protein encoded in a small herpes simplex virus DNA fragment capable of trans- inducing a genes. Proceedings of the National Academy of Sciences, USA 82:5870–5874
    [Google Scholar]
  20. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  21. Quinn J. P., McGeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  22. Rixon F. J., McGeoch D. J. 1984; A 3′ co-terminal family of mRNAs from the herpes simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  23. Roizman B. 1979; The structure and isomerization of herpes simplex virus genomes. Cell 16:481–494
    [Google Scholar]
  24. Sacks W. R., Schaffer P. A. 1987; Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. Journal of Virology 61:829–839
    [Google Scholar]
  25. Sakaoka H., Kurita K., Lida Y., Takada S., Umene K., Kim Y. T., Ren C. S., Nahmias A. J. 1994; Quantitative analysis of genomic polymorphism of herpes simplex virus type 1 strains from six countries: studies of molecular evolution and molecular epidemiology of the virus. Journal of General Virology 75:513–527
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn pp 7.12–7.29 New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schlenstedt G., Saavedra C., Loeb J. D. J., Cole C. N., Silver P. A. 1995; The GTP-bound form of the yeast Ran/TC4 homologue blocks nuclear protein import and appearance of poly(A)+ RNA in the cytoplasm. Proceedings of the National Academy of Sciences, USA 92:225–229
    [Google Scholar]
  28. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in the a 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–346
    [Google Scholar]
  29. Sekiguchi T., Miyata T., Nishimoto T. 1988; Molecular cloning of the cDNA of human X chromosomal gene (CCGl) which complements the temperature-sensitive G1 mutants, tsBN462 and ts13 of the BHK cell line. EMBO Journal 7:1683–1687
    [Google Scholar]
  30. Severini A., Morgan A. R., Tovell D. R., Tyrrell D. L. J. 1994; Study of the structure of replicative intermediates of HSV-1 DNA by pulse-field gel electrophoresis. Virology 200:428–435
    [Google Scholar]
  31. Skare J., Summers W. C. 1977; Structure and function of herpesvirus genomes. II. Eco RI, Xba I, and Hin dIII endonuclease cleavage sites on herpes simplex virus type 1 DNA. Virology 76:581–595
    [Google Scholar]
  32. Stow N. D. 1992; Herpes simplex virus type 1 origin-dependent DNA replication in insect cells using recombinant baculoviruses. Journal of General Virology 73:313–321
    [Google Scholar]
  33. Stow N. D., McMonagle E. C. 1983; Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type I. Virology 130:427–438
    [Google Scholar]
  34. Tachibana T., Imamoto N., Seino H., Nishimoto T., Yoneda Y. 1994; Loss of RCCl leads to suppression of nucleic protein import in living cells. Journal of Biological Chemistry 269:24542–24545
    [Google Scholar]
  35. Uchida S., Sekiguchi T., Nishitani H., Miyauchi K., Ohtsubo M., Nishimoto T. 1990; Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene. Molecular and Cellular Biology 10:577–584
    [Google Scholar]
  36. Umene K. 1985a; Variability of the region of the herpes simplex virus type 1 genome yielding defective DNA: Smal fragment polymorphism. Intervirology 23:131–139
    [Google Scholar]
  37. Umene K. 1985b; Intermolecular recombination of the herpes simplex virus type 1 genome analysed using two strains differing in restriction enzyme cleavage sites. ]ournal of General Virology 66:2659–2670
    [Google Scholar]
  38. Umene K. 1986; Conversion of a fraction of the unique sequence to part of the inverted repeats in the S component of the herpes simplex virus type 1 genome. Journal of General Virology 67:1035–1048
    [Google Scholar]
  39. Umene K. 1993; Herpes simplex virus type 1 variant a sequence generated by recombination and breakage of the a sequence in defined regions, including the one involved in recombination. Journal of Virology 67:5685–5691
    [Google Scholar]
  40. Umene K. 1994; Excision of DNA fragments corresponding to the unit-length a sequence of herpes simplex virus type 1 and terminus variation predominate on one side of the excised fragment. Journal of Virology 68:4377–4383
    [Google Scholar]
  41. Umene K., Enquist L. W. 1981; A deletion analysis of lambda hybrid phage carrying the Us region of herpes simplex virus type 1 (Patton). I. Isolation of deletion derivatives and identification of chi-likes sequences. Gene 13:251–268
    [Google Scholar]
  42. Umene K., Yoshida M. 1993; Genomic characterization of two predominant genotypes of herpes simplex virus type 1. Archives of Virology 131:29–46
    [Google Scholar]
  43. Wagner E. K. 1985; Individual HSV transcripts: characterization of specific genes. In The Herpesviruses vol 3 pp 45–104 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  44. Watanabe M., Furuno N., Goebl M., Go M., Miyauchi K., Sekiguchi T., Basilico C., Nishimoto T. 1991; Molecular cloning of the human gene, CCG2, that complements the BHK-derived temperature-sensitive cell cycle mutant tsBN63: identity of CCG2 with the human X chromosomal SCAR/RPS4X gene. Journal of Cell Science 100:35–43
    [Google Scholar]
  45. Watson R. J., Umene K., Enquist L. W. 1981; Reiterated sequences within the intron of an immediate-early gene of herpes simplex virus type 1. Nucleic Acids Research 9:4189–4199
    [Google Scholar]
  46. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
  47. Yamagishi H., Tsuda T., Fujimoto S., Toda M., Kato K., Maekawa Y., Umeno M., Anai M. 1983; Purification of small polydisperse circular DNA of eukaryotic cells by use of ATP-dependent deoxyribonuclease. Gene 26:317–321
    [Google Scholar]
  48. Yanagi K., Talavera A., Nishimoto T., Rush M. G. 1978; Inhibition of herpes simplex virus type 1 replication in temperature-sensitive cell cycle mutants. Journal of Virology 25:42–50
    [Google Scholar]
  49. Yokoyama N., Hayashi N., Seki T., Pante N., Ohba T., Nishii K., Kuma K., Hayashida T., Miyata T., Aebi U., Fukui M., Nishimoto T. 1995; A giant nucleopore protein that binds Ran/TC4. Nature 376:184–188
    [Google Scholar]
  50. Zhang X., Efstathiou S., Simmons A. 1994; Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implication for viral DNA amplification strategies. Virology 202:530–539
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-9-2261
Loading
/content/journal/jgv/10.1099/0022-1317-77-9-2261
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error