1887

Abstract

Herpes simplex virus type 1 (HSV-1) capsid assembly takes place in the nucleus of infected cells. However, when each of the outer capsid shell proteins, VP5, VP23 and VP26, is expressed in the absence of any other HSV-1 proteins, it does not localize to the nucleus but is distributed throughout the cell. We have previously shown that the HSV-1 capsid scaffolding protein, preVP22a, can relocate VP5 into the nucleus but does not influence the distribution of VP23. We now demonstrate that the outer capsid shell protein, VP19C, is able to relocate both VP5 and VP23 separately into the nucleus. However, nuclear localization of VP26 is only observed when VP5 is present together with either VP19C or preVP22a. Thus, pair-wise interactions involving all of the abundant capsid proteins have now been identified. Electron microscope examination of insect cells coinfected with recombinant baculoviruses expressing VP19C and VP5 reveals the presence of 70 nm diameter ‘capsid-like’ structures, suggesting that these two proteins can form the basic capsid shell.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-9-2251
1996-09-01
2022-08-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/9/JV0770092251.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-9-2251&mimeType=html&fmt=ahah

References

  1. Baker T. S., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. 1990; Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. Journal of Virology 64:563–573
    [Google Scholar]
  2. Booy F. P., Trus B. L., Newcomb W. W., Brown J. C., Conway J. F., Steven A. C. 1994; Finding a needle in a haystack: detection of a small protein (the 12 kDa VP26) in a large complex (the 200 MDa capsid of herpes simplex virus). Proceedings of the National Academy of Sciences USA 91:5652–5656
    [Google Scholar]
  3. Cohen G. H., Ponce de Leon M., Diggelmann H., Lawrence W. C., Vernon S. K., Eisenberg R. J. 1980; Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. Journal of Virology 34:521–531
    [Google Scholar]
  4. Desai P., DeLuca N. A., Glorioso J. C., Person S. 1993; Mutations in herpes simplex virus type 1 genes encoding VP5 and VP23 abrogate capsid formation and cleavage of replicated DNA. Journal of Virology 67:1357–1364
    [Google Scholar]
  5. Desai P., Watkins S. C., Person S. 1994; The size and symmetry of B capsids of herpes simplex virus type 1 are determined by the gene products of the UL26 open reading frame. Journal of Virology 68:5365–5374
    [Google Scholar]
  6. Gao M., Matusick-Kumar L., Hurlburt W., DiTusa S. F., Newcomb W. W., Brown J. C., McCann P. J. III, Deckman I., Colonno R. J. 1994; The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. Journal of Virology 68:3702–3712
    [Google Scholar]
  7. Gibson W., Roizman B. 1972; Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtypes 1 and 2. Journal of Virology 10:1044–1052
    [Google Scholar]
  8. Hong Z., Beaudet-Miller M., Durkin J., Zhang R., Kwong A. D. 1996; Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein. Journal of Virology 70:533–540
    [Google Scholar]
  9. Kennard J., Rixon F. J., McDougall I. M., Tatman J. D., Preston V. G. 1995; The 25 amino acid residues at the carboxy terminus of the herpes simplex virus type 1 UL26.5 protein are required for the formation of the capsid shell around the scaffold. Journal of General Virology 76:1611–1621
    [Google Scholar]
  10. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  11. McLauchlan J., Liefkens K., Stow N. D. 1994; The herpes simplex virus type 1 UL37 gene product is a component of virus particles. Journal of General Virology 75:2047–2052
    [Google Scholar]
  12. McNabb D. S., Courtney R. J. 1992a; Identification and characterization of the herpes simplex virus type 1 virion protein encoded by the UL35 open reading frame. Journal of Virology 66:2653–2663
    [Google Scholar]
  13. McNabb D. S., Courtney R. J. 1992b; Posttranslational modification and subcellular localization of the p12 capsid protein of herpes simplex virus type 1. Journal of Virology 66:4839–4847
    [Google Scholar]
  14. Matusick-Kumar L., Hurlburt W., Weinheimer S. P., Newcomb W. W., Brown J. C., Gao M. 1994; Phenotype of the herpes simplex virus type 1 protease substrate ICP35 mutant virus. Journal of Virology 68:5384–5394
    [Google Scholar]
  15. Matusick-Kumar L., Newcomb W. W., Brown J. C., McCann P. J., Hurlburt W., Weinheimer S. P., Gao M. 1995; The C-terminal 25 aas of the protease and its substrate ICP35 of herpes simplex virus type 1 are involved in the formation of sealed capsids. Journal of Virology 69:4347–4356
    [Google Scholar]
  16. Newcomb W. W., Brown J. C. 1989; Use of Ar + plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. Journal of Virology 63:4697–4702
    [Google Scholar]
  17. Newcomb W. W., Brown J. C. 1991; Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. Journal of Virology 65:613–620
    [Google Scholar]
  18. Newcomb W. W., Trus B. L., Booy F. P., Steven A. C., Wall J. S., Brown J. C. 1993; Structure of the herpes simplex virus capsid: molecular composition of the pentons and triplexes. Journal of Molecular Biology 232:499–511
    [Google Scholar]
  19. Nicholson P., Addison C., Cross A. M., Kennard J., Preston V. G., Rixon F. J. 1994; Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. Journal of General Virology 75:1091–1099
    [Google Scholar]
  20. Pertuiset B., Boccara M., Cebrian J., Berthelot N., Chousterman S., Puvion-Dutilleul F., Sisman J., Sheldrick P. 1989; Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene required for capsid assembly. Journal of Virology 63:2169–2179
    [Google Scholar]
  21. Powell K. L., Watson D. H. 1975; Some structural antigens of herpes simplex virus type 1. Journal of General Virology 29:167–178
    [Google Scholar]
  22. Preston V. G., Coates J. A. V., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  23. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., AI Kobaisi M. F. 1992; Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole UL26 open reading frame. Virology 186:87–98
    [Google Scholar]
  24. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  25. Schrag J. D., Prasad B. V. V., Rixon F. J., Chiu W. 1989; Three-dimensional structure of the HSV-1 nucleocapsid. Cell 56:651–660
    [Google Scholar]
  26. Sherman G., Bachenheimer S. L. 1988; Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163:471–480
    [Google Scholar]
  27. Stow N. D., Hammarsten O., Arbuckle M. I., Elias P. 1993; Inhibition of herpes simplex virus type 1 DNA replication by mutant forms of the origin-binding protein. Virology 196:413–418
    [Google Scholar]
  28. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J. 1994; Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. Journal of General Virology 75:1101–1113
    [Google Scholar]
  29. Thomsen D. R., Roof L. L., Homa F. L. 1994; Assembly of herpes-simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. Journal of Virology 68:2442–2457
    [Google Scholar]
  30. Thomsen D. R., Newcomb W. W., Brown J. C., Homa F. L. 1995; Assembly of the herpes-simplex virus capsid: requirement for the carboxyl-terminal 25 amino-acids of the proteins encoded by the UL26 and UL26.5 genes. Journal of Virology 69:3690–3703
    [Google Scholar]
  31. Trus B. L., Homa F. L., Booy F. P., Newcomb W. W., Thomsen D. R., Cheng N., Brown J. C., Steven A. C. 1995; Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. Journal of Virology 69:7362–7366
    [Google Scholar]
  32. Zhou Z. H., Prasad B. V. V., Jakana J., Rixon F. J., Chiu W. 1994; Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan cryomicroscopy. Journal of Molecular Biology 242:456–469
    [Google Scholar]
  33. Zhou Z. H., He J., Jakana J., Tatman J., Rixon F. J., Chiu W. 1995; Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nature Structural Biology 2:1026–1030
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-9-2251
Loading
/content/journal/jgv/10.1099/0022-1317-77-9-2251
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error