Reverse Transcriptase Jumps and Gaps Free

Abstract

Introduction. Retroviruses are single-stranded RNA viruses of eukaryotes. Different subfamilies have been described. Avian or murine oncoviruses induce neoplasms, whereas lentiviruses, typified by human immunodeficiency virus and spumaviruses, produce persistent infections. Lentiviral infections may cause chronic disease whereas spumaviruses are apparently non-pathogenic. The retroviral life cycle is characterized by reverse transcription of their single-stranded plus (i.e. coding) RNA genome into a double-stranded DNA intermediate that integrates into the host genome. Over the last 25 years the mechanism of reverse transcription has been studied in great detail and these studies have led to the model shown in Fig. I. The result of reverse transcription is a linear double-stranded DNA molecule with a long terminal repeat (LTR) at each extremity. Synthesis of each DNA strand by the virus-encoded reverse transcriptase requires one template switch, also called a jump: the first jump is needed for synthesis of a minus DNA strand complementary to the viral RNA, the second jump for plus DNA strand synthesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-9-1987
1996-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/9/JV0770091987.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-9-1987&mimeType=html&fmt=ahah

References

  1. Bao Y., Hull R. 1992; Characterization of the discontinuities in rice bacilliform virus DNA. Journal of General Virology 73:1297–1301
    [Google Scholar]
  2. Blum H. E., Harris J. D., Ventura P., Walker D., Staskus K., Retzel E., Haase A. T. 1985; Synthesis in cell culture of the gapped linear duplex DNA of the slow virus Visna. Virology 142:270–277
    [Google Scholar]
  3. Boone L. R., Skalka A. M. 1981a; Viral DNA synthesized in vitro by avian retrovirus particles permeabilized with mellitin. I. Kinetics of synthesis and size of minus- and plus-strand transcripts. Journal of Virology 37:109–116
    [Google Scholar]
  4. Boone L. R., Skalka A. M. 1981b; Viral DNA synthesized in vitro by avian retrovirus particles permeabilized with mellitin. II. Evidence for a strand displacement mechanism in plus-strand synthesis. Journal of Virology 37:117–126
    [Google Scholar]
  5. Bowman E. H., Pathak V. K., Hu W. S. 1996; Efficient initiation and strand transfer of polypurine tract-primed plus-strand DNA prevent strand transfer of internally initiated plus strand transfer DNAs. Journal of Virology 70:1687–1694
    [Google Scholar]
  6. Charneau P., Clavel F. 1991; A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. Journal of Virology 65:2415–2421
    [Google Scholar]
  7. Charneau P., Alizon M., Clavel F. 1992; A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. Journal of Virology 66:2814–2820
    [Google Scholar]
  8. Charneau P., Mirambeau G., Roux P., Paulous S., Buc H., Clavel F. 1994; HIV-1 reverse transcription: a termination step at the center of the genome. Journal of Molecular Biology 241:651–662
    [Google Scholar]
  9. Coffin J. M. 1990; Retroviridae and their replication. In Virology pp 1437–1500 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  10. Finston W. I., Champoux J. J. 1984; RNA-primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase in vitro. Journal of Virology 51:26–33
    [Google Scholar]
  11. Harris J. D., Scott J. V., Traynor B., Brahic M., Stowring L., Ventura P., Haase A. T., Peluso R. 1981; Visna virus DNA: discovery of a novel gapped structure. Virology 113:573–583
    [Google Scholar]
  12. Hsu T. W., Taylor J. M. 1982; Single-stranded regions on unintegrated avian retrovirus DNA. Journal of Virology 44:47–53
    [Google Scholar]
  13. Huber H. E., Richardson C. C. 1990; Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus type-1 reverse transcriptase. Journal of Biological Chemistry 265:10565–10573
    [Google Scholar]
  14. Hungnes O., Tjotta E., Grinde B. 1991; The plus strand is discontinuous in a subpopulation of unintegrated HIV-1 DNA. Archives of Virology 116:133–141
    [Google Scholar]
  15. Hungnes O., Tjotta E., Grinde B. 1992; Mutations in the central polypurine tract of HIV-1 result in delayed replication. Virology 190:440–442
    [Google Scholar]
  16. Kung H. J., Fung Y. K., Majors J. E., Bishop J. M., Varmus H. E. 1981; Synthesis of pi us strands of retroviral DNA in cells infected with avaian sarcoma virus and mouse mammary tumor virus. Journal of Virology 37:127–138
    [Google Scholar]
  17. Kupiec J. J., Tobaly J., Canivet M., Santillana H. M., Flugel R. M., Peries J., Emanoil R. R. 1988; Evidence for a gapped linear duplex DNA intermediate in the replicative cycle of human and simian spumaviruses. Nucleic Acids Research 16:9557–9565
    [Google Scholar]
  18. Kupiec J. J., Kay A., Hayat M., Ravier R., Peries J., Galibert F. 1991; Sequence analysis of the simian foamy virus type I genome. Gene 101:185–194
    [Google Scholar]
  19. Lee Y. M., Coffin J. M. 1991; Relationship of avian retrovirus DNA synthesis to integration in vitro. Molecular and Cellular Biology 11:1419–1430
    [Google Scholar]
  20. Li P., Stephenson A. J., Kuiper L. J., Burrel C. J. 1993; Doublestranded strong-stop DNA and the second template switch in human immunodeficiency virus (HIV) DNA synthesis. Virology 194:82–88
    [Google Scholar]
  21. Luo G., Sharmeen L., Taylor J. 1990; Specificities involved in the initiation of retroviral plus-strand DNA. Journal of Virology 64:592–297
    [Google Scholar]
  22. Mason W. S., Taylor J. M., Hull R. 1987; Retroid virus genome replication. Advances in Virus Research 32:35–96
    [Google Scholar]
  23. Miller M. D., Wang B., Bushman F. D. 1995; Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. Journal of Virology 69:3938–3944
    [Google Scholar]
  24. Maule A. J., Thomas C. M. 1985; Evidence from cauliflower mosaic virus virion DNA for additional discontinuities in the plus strand. Nucleic Acids Research 13:7359–7373
    [Google Scholar]
  25. Pochart P., Agoutin B., Rousset S., Chanet R., Doroszkiewicz V., Heyman T. 1993; Biochemical and electron microscope analyses of the DNA reverse transcripts present in the virus-like particles of the yeast transposon Ty1. Identification of a second origin of Ty1 DNA plus strand synthesis. Nucleic Acids Research 21:3513–3520
    [Google Scholar]
  26. Pullen A. K., Rattray A. J., Champoux J. J. 1993; The sequence features important for plus strand priming by human immunodeficiency virus type 1 reverse transcriptase. Journal of Biological Chemistry 268:6221–6227
    [Google Scholar]
  27. Rattray A. J., Champoux J. J. 1987; The role of Moloney murine leukemia virus RNAse H activity in the formation of plus-strand primers. Journal of Virology 61:2843–2851
    [Google Scholar]
  28. Rattray A. J., Champoux J. J. 1989; Plus strand priming by Moloney murine virus. Journal of Molecular Biology 208:445–456
    [Google Scholar]
  29. Renshaw R. W., Gonda M. A., Casey J. W. 1991; Structure and transcriptional status of bovine syncytial virus in cytopathic infections. Gene 105:179–184
    [Google Scholar]
  30. Schweizer M., Renne R., Neumann-Haefelin D. 1989; Structural analysis of proviral DNA in simian foamy virus (LK-3)-infected cells. Archives of Virology 109:103–114
    [Google Scholar]
  31. Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the Visna lentivirus: relationship to the AIDS virus. Cell 42:369–382
    [Google Scholar]
  32. Taylor J. M., Cywinski A., Smith J. K. 1983; Discontinuities in the DNA synthesized by an avian retrovirus. Journal of Virology 48:654–659
    [Google Scholar]
  33. Tobaly J., Kupiec J. J., Santillana H. M., Canivet M., Peries J., Emanoil R. R. 1991; Further characterization of the gapped DNA intermediates of human spumavirus: evidence for a dual initiation of plus-strand DNA synthesis. Journal of General Virology 72:605–608
    [Google Scholar]
  34. Varmus H. E., Heasley S., Kung H. J., Oppermann H., Smith V. C., Bishop J. M., Shank P. R. 1978; Kinetics of synthesis, structure and purification of avian sarcoma virus-specific DNA made in the cytoplasm of acutely infected cells. Journal of Molecular Biology 120:55–82
    [Google Scholar]
  35. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. 1985; Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17
    [Google Scholar]
  36. Whitcomb J. M., Hughes S. H. 1992; Retroviral reverse transcription and integration: progress and problems. Annual Review of Cell Biology 8:275–206
    [Google Scholar]
  37. Wӧhrl B. M., Moelling K. 1990; Interaction of HIV-I ribonuclease H with polypurine tract containing Rna-Dna hybrids. Biochemistry 29:10141–10147
    [Google Scholar]
  38. Yu S. F., Baldwin S. R., Gwynn S. R., Yendapalli S., Linial M. L. 1996; Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579–1582
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-9-1987
Loading
/content/journal/jgv/10.1099/0022-1317-77-9-1987
Loading

Data & Media loading...

Most cited Most Cited RSS feed