1887

Abstract

The levels of proliferative T cell responses to peptides representing the human papillomavirus type 16 (HPV-16) E7 protein have been measured using short-term T cell lines derived from peripheral blood of healthy women and those with cervical dysplasias and carcinoma of the cervix. In healthy individuals 47% (7/15) responded predominantly to the N- and C-terminal regions of the protein and 6/7 responders were to a single peptide between amino acids 80–94. In comparison 29% (9/31) of women with cervical dysplasia responded to HPV-16 E7, with a significantly reduced response to both the N- and C-terminal regions ( = 0.03 and 0.038, respectively). A higher proportion of responders was found in patients with high grade lesions (56%, 5/9) versus those with atypical or low grade histology (20%, 4/20) and the response to a single peptide between amino acids 75–94 was also increased in this patient group ( = 0.044). This may be a reflection of higher levels of current or previous exposure to HPV-16 in patients with high grade lesions. Correlation of T cell responses with HPV DNA type (detected by PCR of cervical biopsy tissue) showed that 3/9 (33%) HPV-16 DNA-positive individuals responded. This suggests that E7 may not be the dominant target of the immune response or that the response to E7 is down-regulated in these patients. In addition 4/18 (22%) HPV-16 DNA-negative individuals responded, suggesting that their T cells may have been primed by previous exposure to HPV-16 or that a cross-reactive response was detected. Proliferative T cell responses to both HPV-16 E7 and L1 were reduced in women with cervical carcinoma in comparison to those with cervical dysplasia and healthy controls. The observed down-regulation of responses to HPV-16 E7 in women with cervical dysplasia and cervical carcinoma may reflect an altered functional balance between subsets of T helper cells in HPV-16 infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-7-1585
1996-07-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/7/JV0770071585.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-7-1585&mimeType=html&fmt=ahah

References

  1. Altmann A., Jochmus-Kudielka I., Frank R., Gausepohl H., Moebius U., Gissman L., Meuer S. C. 1992; Definition of immunogenic determinants of the human papillomavirus type 16 nucleoprotein E7. European Journal of Cancer 28:326–333
    [Google Scholar]
  2. Chambers M. A., Stacey S. N., Arrand J. R., Stanley M. A. 1994a; Delayed-type hypersensitivity response to human papillomavirus type 16 E6 protein in a mouse model. Journal of General Virology 75:165–169
    [Google Scholar]
  3. Chambers M. A., Wei Z., Coleman N., Nash A. A., Stanley M. A. 1994b; ′Natural′ presentation of human papillomavirus type 16 E7 protein to immunocompetent mice results in antigen specific sensitisation or sustained unresponsiveness. European Journal of Immunology 24:738–745
    [Google Scholar]
  4. Coleman N., Birley H. D., Renton A. M., Hanna N. F., Ryait B. K., Byrne M., Taylor-Robinson D., Stanley M. A. 1994; Immunological events in regressing genital warts. American Journal of Clinical Pathology 102:768–774
    [Google Scholar]
  5. Comerford S. A., McCance D. J., Dougan G., Tite J. P. 1991; Identification of T- and B-cell epitopes of the E7 protein of human papillomavirus type 16. Journal of Virology 65:4681–4690
    [Google Scholar]
  6. Ellis J. R. M., Keating P. J., Baird J., Hounsell E. F., Renouf D. V., Rowe M., Hopkins D., Duggan-Keen M. F., Bartholomew J. S., Young L. S., Stern P. L. 1995; The association of an HPVI6 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nature Medicine 1:464–470
    [Google Scholar]
  7. Feltkamp M. C., Smits H. L., Vierboom M. P., Minnaar R. P., de Jongh B. M., Drijfhout J. W., ter Schegget J., Melief C. J., Kast W. M. 1993; Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. European Journal of Immunology 23:2242–2249
    [Google Scholar]
  8. Hildesheim A., Tsukui T., Schiffman M. H., Swanson C. A., Lawler P., Rush B. B., Lorincz A. T., Corrigan A., Carbone D., Scott D. R., Lucci J., Houghten R. A., Kramer T., Berzofsky J. A. 1995; T-cell response to HPV and cervical neoplasia: results from a cross-sectional study of IL-2 production and sIL-2R levels among 196 women with and without SIL. 14th International Papillomavirus Conference, Quebec, Canada p 175
    [Google Scholar]
  9. Houghten R. 1985; General method for the rapid solid phase synthesis of large numbers of peptides; specificity of antigen-antibody interaction at the level of individual amino acid. Proceedings of the National Academy of Sciences, USA 82:5131–5135
    [Google Scholar]
  10. Johnson J. C., Burnett A. F., Willet G. D., Young M. A., Doniger J. 1992; High frequency of latent and clinical human papillomavirus cervical infections in immunocompromised human immunodeficiency virus-infected women. Obstetrics and Gynecology 79:321–327
    [Google Scholar]
  11. Kadish A. S., Romney S. L., Ledwidge R., Tindle R., Fernando G. J. P., Zee S. Y., Van Ranst M. A., Burk R. D. 1994; Cell-mediated immune responses to E7 peptides of human papillomavirus (HPV) type 16 are dependant on the HPV type infecting the cervix whereas serological reactivity is not type specific. Journal of General Virology 75:2277–2284
    [Google Scholar]
  12. Kast W. M., Brandt R. M., Drijfhout J. W., Melief C. J. 1993; Human leukocyte antigen-A2.1 restricted candidate cytotoxic T lymphocyte epitopes of human papillomavirus type 16 E6 and E7 proteins identified by using the processing defective human cell line T2. Journal of Immunotherapy 14:115–120
    [Google Scholar]
  13. Kast W. M., Brandt R. M., Sidney J., Drijfhout J. W., Kubo R. T., Grey H. M., Melief C. J., Sette A. 1994; Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. Journal of Immunology 152:3904–3912
    [Google Scholar]
  14. McLean C. S., Sterling J. S., Mowat J., Nash A. A., Stanley M. A. 1993; Delayed-type hypersensitivity response to the human papillomavirus type 16 E7 protein in a mouse model. Journal of General Virology 74:239–245
    [Google Scholar]
  15. Manos M. M., Wright D. K., Lewis A. J., Broker T. R., Wolinsky S. M. 1989; The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. In Molecular Diagnostics of Human Cancer, Cancer Cells 7 pp 209–214 Edited by Furth M., Greaves M. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Marston F. A. O. 1986; The purification of eukaryotic polypeptides synthesised in Escherichia coli. Biochemical Journal 240:1–12
    [Google Scholar]
  17. Melbye M., Palefsky J., Gonzales J., Ryder L. P., Nielsen H., Bergmann O., Pindborg J., Biggar R. J. 1990; Immune status as a determinant of human papillomavirus detection and its association with anal epithelial abnormalities. International Journal of Cancer 46:203–206
    [Google Scholar]
  18. Porreco R., Penn I., Droegemueller W., Greer B., Makowski E. 1975; Gynecological malignancies in immunosuppressed organ homograft recipients. Obstetrics & Gynecology 45:359–364
    [Google Scholar]
  19. Resnick R. M., Cornelissen M. T., Wright D. K., Eichinger G. H., Fox H. S., ter Schegget J., Manos M. M. 1990; Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. Journal of the National Cancer Institute 82:1477–1484
    [Google Scholar]
  20. Sadovnikova E., Zhu X., Collins S. M., Zhou J., Vousden K., Crawford L., Beverley P., Stauss H. J. 1994; Limitations of predictive motifs revealed by cytotoxic T lymphocyte epitope mapping of the human papillomavirus E7 protein. International Immunology 6:289–296
    [Google Scholar]
  21. Shepherd P. S., Tran T. T. T., Rowe A. J., Cridland J. C., Comerford S. A., Chapman M. G., Rayfield L. S. 1992; T-cell responses to the human papillomavirus type 16 E7 protein in mice of different haplotypes. Journal of General Virology 73:1269–1274
    [Google Scholar]
  22. Shepherd P. S., Rowe A., Cridland J., Chapman M., Luxton J., Rayfield L. 1994; An immunodominant region in HPVI6 LI identified by T cell responses in patients with cervical dysplasias. In Immunology of Human Papillomaviruses pp 169–174 Edited by Stanley M. A. New York: Plenum Press;
    [Google Scholar]
  23. Shepherd P. S., Rowe A. J., Cridland J. C., Coletart T., Wilson P., Luxton J. C. 1996; Proliferative T cell responses to human papillomavirus type 16 L1 peptides in patients with cervical dysplasia. Journal of General Virology 77:593–602
    [Google Scholar]
  24. Smith D. B., Johnson K. S. 1988; Single step purification of polypeptides expressed in E. coli as fusions with glutathione-S-transferase. Gene 67:31–40
    [Google Scholar]
  25. Snijders P. J. F., van den Brule A. J. C., Schrijnemakers H. F. J., Snow G., Meijer C. J. L. M., Walboomers A. J. M. M. 1990; The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. Journal of General Virology 71:173–181
    [Google Scholar]
  26. Strang G., Hickling J. K., MClndoe G. A. J., Howland K., Wilkinson D., Ikeda H., Rothbard J. B. 1990; Human T cell responses to human papillomavirus type 16 L1 and E6 synthetic peptides: identification of T cell determinants, HLA-DR restriction and virus type specificity. Journal of General Virology 71:423–431
    [Google Scholar]
  27. Tindle R. W., Fernando G. J. P., Sterling J. C., Frazer I. H. 1991; A public T-helper cell epitope of the E7 transforming protein of human papillomavirus type 16 provides cognate help for several E7 B-cell epitopes from cervical cancer associated human papillomavirus genotypes. Proceedings of the National Academy of Sciences, USA 88:5887–5891
    [Google Scholar]
  28. Tindle R. W., Herd K., Londono P., Fernando G. J., Chatfield S. N., Malcolm K., Dougan G. 1994; Chimeric hepatitis B core antigen particles containing B- and Th-epitopes of human papillomavirus type 16 E7 protein induce specific antibody and T-helper responses in immunized mice. Virology 200:547–557
    [Google Scholar]
  29. van den Brule A. J., Snijders P. J., Raaphorst P. M., Schrijnemakers H. F., Delius H., Gissmann L., Meijer C. J., Walboomers J. M. 1992; General primer polymerase chain reaction in combination with sequence analysis for identification of potentially novel human papillomavirus genotypes in cervical lesions. Journal of Clinical Microbiology 30:1716
    [Google Scholar]
  30. Wright D., Manos M. 1990; Sample preparation from paraffin-embedded tissues. In PCR Protocols: A Guide to Methods and Applications pp 153–158 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-7-1585
Loading
/content/journal/jgv/10.1099/0022-1317-77-7-1585
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error