1887

Abstract

Varicella-zoster virus (VZV) open reading frame 4-encoded protein (IE4) possesses transactivating properties for VZV genes as well as for genes of heterologous viruses. The major regulatory immediate-early protein of VZV (IE62) is a transactivator of VZV gene expression. In transfection assays, IE4 has been shown to enhance activation induced by IE62. To investigate the functional interactions underlying this observation, indirect immuno-fluorescence studies were undertaken to determine whether IE62 could influence IE4 intracellular localization in transfected cells. In single transfections, IE4 was predominantly found in cytoplasm. In cotransfection with IE62, the IE4 localization pattern was altered, with nuclear staining predominating over cytoplasmic staining. This effect was specific to the IE62 protein since the gene products of ORF63 and ORF61, which are also regulatory proteins, did not influence IE4 distribution. The use of IE62 mutants indicated that IE62 influence is independent of its transactivation function and that the integrity of regions 3 and 4 is required. IE62 remained nuclear whether IE4 was present or not. These observations underline differences in the regulation of gene expression between VZV proteins and their herpes simplex virus type 1 homologues. In infected cells, IE4 was only sometimes found to colocalize with IE62 in nuclei. This observation suggests that when all VZV proteins are present, complex interactions probably occur which could diminish the influence of IE62.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-7-1505
1996-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/7/JV0770071505.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-7-1505&mimeType=html&fmt=ahah

References

  1. Baudoux L., Defechereux P., Schoonbroodt S., Merville-Louis M.-P., Rentier B., Piette J. 1995; Mutational analysis of varicella-zoster virus major immediate-early protein 1E62. Nucleic Acids Research 23:1341–1349
    [Google Scholar]
  2. Davison A. J. 1991; Varicella-zoster virus. Journal of General Virology 72:475–486
    [Google Scholar]
  3. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicell-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  4. Debrus S., Sadzot-Delvaux C., Nikkels A., Piette J., Rentier B. 1995; Varicella-zoster virus gene 63 encodes an immediate-early protein abundantly expressed during latency. Journal of Virology 69:3240–3245
    [Google Scholar]
  5. Defechereux P., Melen L., Baudoux L., Merville-Louis M.-P., Rentier B., Piette J. 1993; Characterization of the regulatory functions of varicella-zoster virus open reading frame 4 gene product. Journal of Virology 67:4379–4385
    [Google Scholar]
  6. Disney G. H., Everett R. D. 1990; A herpes simplex virus type 1 recombinant with both copies of the Vmw175 coding sequences replaced by the homologous varicella-zoster virus open reading frame. Journal of General Virology 71:2681–2689
    [Google Scholar]
  7. Disney G. H., McKee T. A., Everett R. D. 1990; The product of varicella-zoster virus gene 62 autoregulates its own promoter. Journal of General Virology 71:2999–3003
    [Google Scholar]
  8. Forghani B., Mahalingam R., Vafai A., Hurst J. W., Dupuis K. W. 1990; Monoclonal antibody to immediate-early protein encoded by varicella-zoster virus gene 62. Virus Research 16:195–210
    [Google Scholar]
  9. Hardwicke M. A., Vaughan P. J., Sekulovich R. E., O’Conner R., Sandri-Goldin R. M. 1989; The region important for the activator and repressor functions of herpes simplex virus type 1α protein ICP27 map to the C-terminal half of the molecule. Journal of Virology 63:4590–4602
    [Google Scholar]
  10. Hay J., Ruyechan W. T. 1994; Varicella-zoster virus- a different kind of herpesvirus latency?. Seminars in Virology 5:241–247
    [Google Scholar]
  11. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  12. Honess R. W., Roizman B. 1975; Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional polypeptides. Proceedings of the National Academy of Sciences, USA 72:1276–1280
    [Google Scholar]
  13. Inchauspe G., Ostrove J. M. 1989; Differential regulation by varicella-zoster virus (VZV) and herpes simplex virus type-1 transactivating genes. Virology 173:710–714
    [Google Scholar]
  14. Inchauspe G., Nagpal S., Ostrove J. M. 1989; Mapping of two varicella-zoster virus-encoded genes that activate the expression of viral early and late genes. Virology 173:700–709
    [Google Scholar]
  15. McGeoch D. J., Dolan A., Donald S., Braver D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  16. McLean G. W., Owsianka A. M., Subak-Sharpe J. H., Marsden H. S. 1991; Generation of anti-peptide and anti-protein sera: effect of peptide presentation on immunogenicity. Journal of Immunological Methods 137:149–157
    [Google Scholar]
  17. McMahan L., Schaffer P. A. 1990; The repressing and enhancing functions of the herpes simplex virus regulatory protein ICP27 map to C-terminal regions and are required to modulate viral gene expression very early in infection. Journal of Virology 64:3471–3485
    [Google Scholar]
  18. Mears W. E., Lam V., Rice S. A. 1995; Identification of nuclear and nucleolar signals in the herpes simplex virus regulatory protein ICP27. Journal of Virology 69:935–947
    [Google Scholar]
  19. Moriuchi H., Moriuchi M., Smith H. A., Straus S. E., Cohen J. I. 1992; Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICPO. Journal of Virology 66:7303–7308
    [Google Scholar]
  20. Moriuchi H., Moriuchi M., Smith H. A., Straus S. E., Cohen J. I. 1993; Varicella-zoster virus (VZV) open reading frame 61 protein transactivates VZV gene promoters and enhances the infectivity of VZV DNA. Journal of Virology 67:4290–4295
    [Google Scholar]
  21. Moriuchi H., Moriuchi M., Smith H. A., Cohen J. I. 1994; Varicellazoster virus open reading frame 4 protein is functionally distinct from and does not complement its herpes simplex virus type 1 homolog, ICP27. Journal of Virology 68:1987–1992
    [Google Scholar]
  22. Moriuchi H., Moriuchi M., Debrus S., Piette J., Cohen J. I. 1995; The acidic amino-terminal region of varicella-zoster virus open reading frame 4 protein is required for transactivation and can functionally replace the corresponding region of herpes simplex virus ICP27. Virology 207:376–382
    [Google Scholar]
  23. Mullen M.-A., Gerstberger S., Ciufo D. M., Mosca J. D., Hayward G. 1995; Evaluation of colocalization interactions between the IE110, IE175, and IE63 transactivator proteins of herpes simplex virus within subcellular punctate structures. Journal of Virology 69:476–491
    [Google Scholar]
  24. Nagpal S., Ostrove J. M. 1991; Characterization of a potent varicella-zoster virus encoded trans-repressor. Journal of Virology 65:5289–5296
    [Google Scholar]
  25. Ostrove J. M. 1990; Molecular biology of varicella-zoster virus. Advances in Virus Research 38:45–99
    [Google Scholar]
  26. Perera L. P., Mosca J. D., Ruyechan W. T., Hay J. 1992a; Regulation of varicella-zoster virus gene expression in human T lymphocytes. Journal of Virology 66:5298–5304
    [Google Scholar]
  27. Perera L. P., Mosca J. D., Sadeghi-Zadeh M., Ruyechan W. T., Hay J. 1992b; The varicella–zoster virus immediate-early protein, IE62, can positively regulate its cognate promoter. Virology 191:346–354
    [Google Scholar]
  28. Perera L. P., Kaushal S., Kinchington P. R., Mosca J. D., Hayward G. S., Straus S. E. 1994; Varicella-zoster virus open reading frame 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homolog ICP27. Journal of Virology 68:2468–2477
    [Google Scholar]
  29. Sekulovich R. E., Leary K., Sandri-Goldin R. M. 1988; The herpes simplex virus type 1 α protein ICP27 can act as a trans-repressor or a frans-activator in combination with ICP4 and ICPO. Journal of Virology 62:4510–4522
    [Google Scholar]
  30. Stevenson D., Colma K. L., Davison A. J. 1992; Characterization of the varicella-zoster virus gene 61 protein. Journal of General Virology 73:521–530
    [Google Scholar]
  31. Su L., Knipe D. M. 1989; Herpes simplex virus α protein ICP27 can inhibit or augment viral gene transactivation. Virology 170:496–504
    [Google Scholar]
  32. Wu C. L., Wilcox K. W. 1991; The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters. Journal of Virology 65:1149–1159
    [Google Scholar]
  33. Yao F., Schaffer P. A. 1994; Physical interaction between the herpes simplex virus type 1 immediate-early regulatory proteins ICPO and ICP4. Journal of Virology 68:8158–8168
    [Google Scholar]
  34. Zhu Z., Schaffer P. A. 1995; Intracellular localization of the herpes simplex virus type 1 major transcriptional regulatory protein, ICP4, is affected by ICP27. Journal of Virology 69:49–59
    [Google Scholar]
  35. Zhu Z., Cai W., Schaffer P. A. 1994; Cooperativity among herpes simplex virus type I immediate-early regulatory proteins: ICP4 and ICP27 affect the intracellular localization of ICPO. Journal of Virology 68:3027–3040
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-7-1505
Loading
/content/journal/jgv/10.1099/0022-1317-77-7-1505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error