1887

Abstract

Molecular changes in the haemagglutinin (HA)-coding regions and proteolytic cleavage sites from multiple H5N2 subtype viruses isolated during a recent outbreak of avian influenza (AI) in central Mexico have been characterized. Eighteen isolates, collected during a 15 month period (October 1993 to January 1995) from six central states, were sequenced. None of the 18 predicted HA amino acid sequences were identical and changes were not restricted to a specific region of the sequence. Phylogenetic analyses of the HA sequences demonstrated two virus lineages, designated Puebla and Jalisco, with sequence variation as high as 10.5% for amino acid and 6.2% for nucleotide sequences. During the latter months of the surveillance period, highly pathogenic (HP) strains of Al emerged causing lethal disease in commercial poultry flocks. In each of the HP strains isolated, the HA protein was cleaved in chicken embryo fibroblast cells in the absence of trypsin, and two alterations not found in earlier non-HP isolates were detected. In the HA protein, HP strains all had a glutamic acid → lysine substitution at amino acid position 324 and an insertion of arginine and lysine as new residues 325 and 326. The insertion appears to be due to a duplication of the nucleotide sequence AAAGAA at nucleotide positions 965–970 of the HA-coding region. Computer-assisted secondary structure analyses place the target for the insertion in a predicted RNA stem-loop structure. A mechanism is suggested by which the polymerase duplicates the sequence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-7-1493
1996-07-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/7/JV0770071493.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-7-1493&mimeType=html&fmt=ahah

References

  1. Bashiruddin J. B., Gould A. R., Westbury H. A. 1991; Molecular pathotyping of two avian influenza viruses isolated during the Victoria 1976 outbreak. Australian Veterinary Journal 69:140–142
    [Google Scholar]
  2. Bebenek K., Abbotts J., Roberts J. D., Wilson S. H., Kunkel T. A. 1989; Specificity and mechanism of error-prone replication by human immunodeficiency virus.1 reverse transcriptase. Journal of Biological Chemistry 264:16948–16956
    [Google Scholar]
  3. Bosch F. X., Garten W., Klenk H.-D., Rott R. 1981; Cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza virus. Virology 113:725–735
    [Google Scholar]
  4. Brugh M., Perdue M. L. 1991; Emergence of highly pathogenic virus during selective chicken passage of the prototype mildly pathogenic Chicken/Pennsylvania/83 (H5N2) influenza virus. Avian Diseases 35:824–833
    [Google Scholar]
  5. Brugh M., Beck J. R. 1993; Recovery of minority subpopulations of highly pathogenic avian influenza virus. In Proceedings of Third International Symposium on Avian Influenza, Madison, Wis., USA, 1993 pp 166–174 US Animal Health Association. University of Wisconsin Duplication Services
    [Google Scholar]
  6. Chomzcynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  7. De B. K., Brownlee G. G., Kendal A. P., Shaw M. W. 1988; Complete sequence of a cDNA clone of the hemagglutinin A/Chicken/ Scotland/59 (H5N1) virus: comparison with contemporary North American and European strains. Nucleic Acids Research 16:4181–4182
    [Google Scholar]
  8. Deshpande K. L., Fried V. A., Ando M., Webster R. G. 1987; Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proceedings of the National Academy of Sciences, USA 84:36–40
    [Google Scholar]
  9. Domingo E., Holland J. J. 1988; Higher error rates, population equilibrium and evolution of RNA replication systems. In RNA Genetics vol 3 pp 3–36 Edited by Domingo E., Holland J. J., Ahlquist P. Boca Raton: CRC Press;
    [Google Scholar]
  10. Eckroade R. J., Bachin L. A. 1987; Avian influenza in Pennsylvania –the beginning. In Proceedings of the Second International Symposium on Avian Influenza pp 22–32 Edited by Easterday B. C. Richmond: US Animal Health Association;
    [Google Scholar]
  11. Ferrin T. E., Huang C. C., Jarvins L. E., Langridge R. 1988; The MIDAS display system. Journal of Molecular Graphics 6:13–27
    [Google Scholar]
  12. García M., Brugh M., Beck J. R., Swayne D., Senne D., Pearson J., Gay M., Perez Marquez V., Toscano A., Perdue M. L. 1995; A highly pathogenic (HP), ratite origin, H5N2 avian influenza derivative shares the same hemagglutinin cleavage sequence as recent HP Mexican H5N2 isolates. In Abstracts of the Fourteenth Annual Meeting of the American Society of Virology, Austin, Texas, USA pp 108
    [Google Scholar]
  13. Horimoto T., Kawaoka Y. 1995; Molecular changes in virulent mutants arising from avirulent avian influenza viruses during replication in 14.day.old embryonated eggs. Virology 206:755–759
    [Google Scholar]
  14. Kawaoka Y., Webster R. G. 1985; Evolution of the A/Chicken/ Pennsylvania/83 (H5N2). Virology 146:130–137
    [Google Scholar]
  15. Kawaoka Y., Webster R. G. 1988; Molecular mechanism of acquisition of virulence in influenza virus in nature. Microbial Pathogenesis 5:311–318
    [Google Scholar]
  16. Kawaoka Y., Naeve C. W., Webster R. G. 1984; Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?. Virology 139:303–316
    [Google Scholar]
  17. Kawaoka Y., Nestorowicz A., Alexander D. J., Webster R. G. 1987; Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain. Virology 158:218–227
    [Google Scholar]
  18. Klenk H. D., Rott R. 1988; The molecular biology of influenza virus pathogenicity. Advances in Virus Research 34:247–281
    [Google Scholar]
  19. Kumar S., Tamura K., Nei M. 1993; MEGA:molecular evolutionary genetics analysis version 1.01.. University Park: Pennsylvania State University;
    [Google Scholar]
  20. Lewis J. G., Chang G.-J., Lanciotti R. S., Trent D. W. 1992; Direct sequencing of large flavivirus PCR products for analysis of genome variation and molecular epidemiological investigations. Journal of Virology Methods 38:11–24
    [Google Scholar]
  21. Luo G., Luytjes W., Enami M., Palese P. 1991; The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. Journal of Virology 65:2861–2867
    [Google Scholar]
  22. Panigrahy B., Senne D. A., Pearson J. E. 1995; Presence of avian influenza virus (AIV) subtypes H5N2 and H7N1 in Emus (Dromaius novaehollandiae) and Rheas (Rhea americana). Virus isolation and serological findings. Avian Diseases 39:64–67
    [Google Scholar]
  23. Parvin J. D., Moscons A., Pan W. T., Leider J. M., Palese P. 1986; Measurement of the mutation rates of animal virus: influenza A virus and polio virus type 1. Journal of Virology 59:377–383
    [Google Scholar]
  24. Pearson J. E., Senne D. A., Panigrahy B. 1993; Diagnostic procedures and policies for avian influenza at the national level. Proceedings of the Third International Symposium on Avian Influenza, Madison, Wis., USA pp 258–268 US Animal Health Association. University of Wisconsin Duplication Services
    [Google Scholar]
  25. Perdue M. L. 1992; Naturally occurring NS gene variants in an avian influenza virus isolate. Virus Research 23:223–240
    [Google Scholar]
  26. Perdue M. L., Wainright P., Palmieri S., Brugh M. 1989; In ovo competition between distinct virus populations in an avian influenza isolate. Avian Diseases 33:695–706
    [Google Scholar]
  27. Perdue M. L., Wainright P., Brugh M. 1990; Effects of chicken embryo age on time to death following infection by avian influenza viruses: implications for distinguishing highly pathogenic isolates. Virus Research 16:137–152
    [Google Scholar]
  28. Perdue M. L., Latimer J. W., Crawford J. M. 1995a; A novel carbohydrate addition site on the hemagglutinin protein of a highly pathogenic H7 subtype avian influenza virus. Virology 213:275–281
    [Google Scholar]
  29. Perdue M. L., Crawford J. M., García M., Latimer J. W. 1995b; Molecular modeling of avian influenza virus hemagglutinin protein. Abstracts of the Fourteenth Annual Meeting of the American Society of Virology, Austin, Texas, USA pp 107
    [Google Scholar]
  30. Perdue M. L., García M., Beck J., Swayne D. E. 1996; An Arg–Lys insertion at the hemagglutinin cleavage site of an H5N2 avian influenza isolate. Virus Genes 12: (in press)
    [Google Scholar]
  31. Philpott M., Hioe C., Sheerar M., Hinshaw V. S. 1990; Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus. Journal of Virology 64:2941–2947
    [Google Scholar]
  32. Rocha E., Cox N. J., Black R. A., Harmon M. W., Harrison C. J., Kendal A. P. 1991; Antigenic and genetic variation in influenza A (H1N1) virus isolates recovered from a persistently infected immunodeficient child. Journal of Virology 65:2340–2350
    [Google Scholar]
  33. Rott R., Orlich M., Scholtissek C. 1976; Attenuation of pathogenicity of fowl plague virus by recombination with other influenza A viruses nonpathogenic for fowl: nonexclusive dependence of pathogenicity on hemagglutinin and neuroaminidase of the virus. Journal of Virology 19:54–60
    [Google Scholar]
  34. Saito T., Horimoto T., Kawaoka Y., Senne D. A., Webster R. G. 1994; Emergence of a potentially pathogenic H5N2 influenza virus in chickens. Virology 201:277–284
    [Google Scholar]
  35. Scholtissek C., Rott R., Orlich M., Harms E., Rhodes W. 1977; Correlation of pathogenicity and gene constellation of an influenza A virus (fowl plague). I. Exchange of a single gene. Virology 81:74–80
    [Google Scholar]
  36. Senne D. A., Panigrahy B., Rivera Cruz E., Pearson J. E., Webster R. G. 1995; Characterization of H5N2 avian influenza viruses isolated from chickens in Mexico. In Proceedings of the 132nd Annual Meeting of the Veterinary Medical Association, Pittsburgh, Penn., USA pp 152
    [Google Scholar]
  37. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I.A., Wiley D.C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, USA 79:968–972
    [Google Scholar]
  38. Smith F. I., Palese P. 1988; Influenza viruses: high rate of mutation and evolution. In RNA Genetics vol 3 pp 123–135 Edited by Domingo E., Holland J. J., Ahlquist P. Boca Raton: CRC Press;
    [Google Scholar]
  39. Smith L. M., Sanders J. Z., Kaiser R. J., Hughs P., Dodd C., Connell C.R., Heines C., Kent S. B. H., Hood L. E. 1986; Fluorescence detection in automated DNA sequence analysis. Nature 321:673–681
    [Google Scholar]
  40. Steinhauer D. A., Holland J. J. 1986; Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. Journal of Virology 57:219–228
    [Google Scholar]
  41. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. 1966; Frameshift mutations and genetic code. Cold Spring Harbor Symposium in Quantitative Biology 31:77–84
    [Google Scholar]
  42. Suárez P., Valcarcel J., Ortín J. 1992; Heterogeneity of the mutation rate of influenza virus: isolation of mutator mutants. Journal of Virology 66:2491–2494
    [Google Scholar]
  43. Swofford D. 1989; PAUP: phylogenetic analysis using parsimony, version 3. Champaign: Illinois Natural History Survey;
    [Google Scholar]
  44. Swayne D. E., Perdue M. L. 1995; Summary of pathobiologic and molecular epidemiologic findings from experimental studies in chickens with Mexican avian influenza viruses. Proceedings of the 99th Annual Meeting of the US Animal Health Association, Reno, Nevada, USA pp 579–583 Richmond: Spectrum Press;
    [Google Scholar]
  45. Webster R. G., Rott R. 1987; Influenza virus A pathogenicity: the pivotal role of the hemagglutinin. Cell 50:665–666
    [Google Scholar]
  46. Webster R. G., Laver W. G., Air G. M., Schild G. C. 1982; Molecular mechanisms of variation in influenza viruses. Nature 296:115–121
    [Google Scholar]
  47. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D.C. 1988; Structure of the influenza virus hemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431
    [Google Scholar]
  48. Wiley D. C., Skehel J. J. 1987; Structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual Review of Biochemistry 56:365–394
    [Google Scholar]
  49. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378
    [Google Scholar]
  50. Wilson I. A., Cox N. J. 1990; Structural basis of immune recognition of influenza virus haemagglutinin. Annual Review of Immunology 8:737–771
    [Google Scholar]
  51. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373
    [Google Scholar]
  52. Wood G. W., McCauley J. W., Bashiruddin J. B., Alexander D. J. 1993; Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Archives of Virology 130:209–217
    [Google Scholar]
  53. Wood G. W., Banks J., Alexander D. J. 1994; Deduced amino acid sequences at the hemagglutinin cleavage site of H5N1 avian influenza virus from an outbreak in turkeys in Norfolk, England. Archives of Virology 134:185–194
    [Google Scholar]
  54. Zuker M., Jaeger J., Turner D. 1991; A comparison of optimal and suboptimal RNA secondary structure predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Research 19:2707–2714
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-77-7-1493
Loading
/content/journal/jgv/10.1099/0022-1317-77-7-1493
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error