1887

Abstract

The bacteriophage T7 RNA polymerase gene was integrated into the fowlpox virus genome under the control of the vaccinia virus early/late promoter, P. The recombinant fowlpox virus, fpEFLT7pol, stably expressed T7 RNA polymerase in avian and mammalian cells, allowing transient expression of transfected genes under the control of the T7 promoter. The recombinant fowlpox virus expressing T7 RNA polymerase offers an alternative to the widely used vaccinia virus vTF7-3, or the recently developed modified vaccinia virus Ankara (MVA) T7 RNA polymerase recombinant, a highly attenuated strain with restricted host-range. Recombinant fowlpox viruses have the advantage that as no infectious virus are produced from mammalian cells they do not have to be used under stringent microbiological safety conditions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-5-963
1996-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/5/JV0770050963.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-5-963&mimeType=html&fmt=ahah

References

  1. Ball L. A. 1994; Replication of the genomic RNA of a positive-stranded RNA animal virus from negative-sense transcripts. Proceedings of the National Academy of Sciences, USA 91:12443–12447
    [Google Scholar]
  2. Boursnell M. E. G., Green P. F., Campbell J. I. A., Deuter A., Peters R. W., Tomley F. M., Samson A. C. R., Chambers P., Emmerson P. T., Binns M. M. 1990; Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. Journal of General Virology 71:621–628
    [Google Scholar]
  3. Britton P., Mawditt K. L., Page K. W. 1991; The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: comparison with transmissible gastroenteritis virus genes. Virus Research 21:181–198
    [Google Scholar]
  4. Elroy-Stein O., Fuerst T. R., Moss B. 1989; Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequence improves the performance of the vaccinia virus/ bacteriophage T7 hybrid expression system. Proceedings of the National Academy of Sciences, USA 86:6126–6130
    [Google Scholar]
  5. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  6. Fuerst T. R., Earl P. L., Moss B. 1987; Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Molecular and Cellular Biology 7:2538–2544
    [Google Scholar]
  7. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  8. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. 1995; Recombinant vesicular stomatitis viruses from DNA. Proceedings of the National Academy of Sciences, USA 92:4477–4481
    [Google Scholar]
  9. Mockett B., Binns M. M, Boursnell M. E., Skinner M. A. 1992; Comparison of the locations of homologous fowlpox and vaccinia virus genes reveals major genome reorganization. Journal of General Virology 73:2661–2668
    [Google Scholar]
  10. Moscovici C., Moscovici M. G., Jimenez H., Lai M. M. C., Hayman M. J., Vogt P. K. 1977; Continuous tissue culture cell lines derived from chemically induced tumours of Japanese Quail. Cell 11:95–103
    [Google Scholar]
  11. Percy N., Belsham G. J., Brangwyn J. K., Sullivan M., Stone D. M., Almond J. W. 1992; Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5′ noncoding region of the genome involved in internal initiation of protein synthesis. Journal of Virology 66:1695–1701
    [Google Scholar]
  12. Polkinghorne I., Roy P. 1995; Transient expression in insect cells using a recombinant baculovirus synthesising bacteriophage T7 RNA polymerase. Nucleic Acids Research 23:188–191
    [Google Scholar]
  13. Qingzhong Y., Barrett T., Brown T. D. K., Cook J. K. A., Green P., Skinner M. A., Cavanagh D. 1994; Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine 12:569–573
    [Google Scholar]
  14. Rodriguez D., Zhou Y., Rodriguez J.-R., Durbin R. K., Jimenez V., McAllister W. T., Esteban M. 1990; Regulated expression of nuclear genes by T3 RNA polymerase and lac repressor, using recombinant vaccinia virus vectors. Journal of Virology 64:4851–4857
    [Google Scholar]
  15. Schnell M. J., Mebatsion T., Conzelmann K.-K. 1994; Infectious rabies viruses from cloned cDNA. EMBO Journal 13:4195–1203
    [Google Scholar]
  16. Somogyi P., Frazier J., Skinner M. A. 1993; Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology 197:439–444
    [Google Scholar]
  17. Sutter G., Ohlmann M., Erfle V. 1995; Non-replicating vaccinia vector efficiently expresses bacteriophage-T7 RNA-poly-merase. FEBS Letters 371:9–12
    [Google Scholar]
  18. Usdin T. B., Brownstein M. J., Moss B., Isaacs S. N. 1993; SP6 RNA polymerase containing vaccinia virus for rapid expression of cloned genes in tissue culture. Biotechniques 14:222–224
    [Google Scholar]
  19. Taylor J., Weinberg R., Languet B., Desmettre P., Paoletti E. 1988; Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine 6:497–503
    [Google Scholar]
  20. van der Most R. G., Heijnen L., Spaan W. J. M., de Groot R. J. 1992; Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Research 20:3375–3381
    [Google Scholar]
  21. Wyatt L. S., Moss B., Rozenblatt S. 1995; Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology 210202–205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-5-963
Loading
/content/journal/jgv/10.1099/0022-1317-77-5-963
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error