1887

Abstract

The entire genomic sequences of two strains (Hypr and 263) of the flavivirus tick-borne encephalitis (TBE) virus differing in virulence from the prototypic strain Neudoerfl were determined. Strain Hypr is a human isolate of TBE virus with a high laboratory passage history which exhibits a significantly higher neuro-invasiveness in mice compared to the prototype strain. Strain 263 is a low-passage tick-isolate with a temperature-sensitive and attenuated phenotype. Except for the heterogeneous 3′ non-coding regions strains Hypr and 263 share, respectively, 97.2% and 97.6% nucleotide sequence identity with strain Neudoerfl, and differ by a total of 42 and 36 amino acids from the prototypic strain. Of these, only 12 amino acids for each of the two strains represent non-conservative differences unique to an individual strain and some of these are located at positions highly conserved among flaviviruses. Based on these observations, the potential biological significance of particular sequence differences is discussed in the context of the current knowledge about molecular determinants of flavivirus virulence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-5-1035
1996-05-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/5/JV0770051035.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-5-1035&mimeType=html&fmt=ahah

References

  1. Aihara S., Chunming R., Yong-Xin Y., Lee T., Watanabe K., Komiya T., Sumiyoshi H., Hashimoto H., Nomoto A. 1991; Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes 5:95–109
    [Google Scholar]
  2. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Kunz C., Heinz F. X. 1995; Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. Journal of Virology 69:695–700
    [Google Scholar]
  3. Blok J., McWilliam S. M., Butler H. C., Gibbs A. J., Weiller G., Herring B. L., Hemsley A. C., Aaskov J. G., Yoksan S., Bhamarapravati N. 1992; Comparison of a dengue-2 virus and its candidate vaccine derivative: Sequence relationships with the flaviviruses and other viruses. Virology 187:573–590
    [Google Scholar]
  4. Cahour A., Pletnev A., Vazeille-Falcoz M., Rosen L., Lai C.-J. 1995; Growth-restricted dengue virus mutants containing deletions in the 5′ noncoding region of the RNA genome. Virology 207:68–76
    [Google Scholar]
  5. Calisher C. H., Karabatsos N., Dalrymple J. M., Shope R. E., Porterfield J. S., Westaway E. G., Brandt W. E. 1989; Antigenic relationships between flaviviruses as determined by crossneutralization tests with polyclonal antisera. Journal of General Virology 70:37–43
    [Google Scholar]
  6. Cecilia D., Gould E. A. 1991; Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181:70–77
    [Google Scholar]
  7. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression, and replication. Annual Review of Microbiology 44:649–688
    [Google Scholar]
  8. dos Santos C. N. D., Post P. R., Carvalho R., Ferreira I. L., Rice C. M., Galler R. 1995; Complete nucleotide sequence of yellow fever virus vaccine strains 17DD and 17D-213. Virus Research 35:35–41
    [Google Scholar]
  9. Gao G. G., Hussain M. H., Reid H. W., Gould E. A. 1994; Identification of naturally occurring monoclonal antibody escape variants of louping ill virus. Journal of General Virology 75:609–614
    [Google Scholar]
  10. Gritsun T. S., Holmes E. C., Gould E. A. 1995; Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Research 35:307–321
    [Google Scholar]
  11. Hahn C. S., Dalrymple J. M., Strauss J. H., Rice C. M. 1987; Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proceedings of the National Academy of Sciences, USA 84:2019–2023
    [Google Scholar]
  12. Hasegawa H., Yoshida M., Shiosaka T., Fujita S., Kobayashi Y. 1992; Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology 191:158–165
    [Google Scholar]
  13. Heinz F. X., Kunz C. 1981; Homogeneity of the structural glycoprotein from European isolates of tick-borne encephalitis virus: Comparison with other flaviviruses. Journal of General Virology 57:263–274
    [Google Scholar]
  14. Heinz F. X., Roehrig J. T. 1990; Flaviviruses. In Immunochemistry of Viruses. II. The Basis for Serodiagnosis and Vaccines pp 289–305 Edited by van Regenmortel M. H. V., Neurath A. R. Amsterdam: Elsevier;
    [Google Scholar]
  15. Heinz F. X., Mandl C. W. 1993; The molecular biology of tickborne encephalitis virus. Acta Pathologica Microbiologica et Immuno-logica Scandinavica 101:735–745
    [Google Scholar]
  16. Heinz F. X., Berger R., Tuma W., Kunz C. 1983; A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology 126:525–537
    [Google Scholar]
  17. Heinz F. X., Mandl C. W., Guirakhoo F., Holzmann H., Tuma W., Kunz C. 1990; The envelope protein E of tick-borne encephalitis virus and other flaviviruses: Structure, functions and evolutionary relationships. Archives of Virology Suppl 1125–135
    [Google Scholar]
  18. Heinz F. X., Stiasny K., Puschner-Auer G., Holzmann H., Allison S. L., Mandl C. W., Kunz C. 1994; Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198:109–117
    [Google Scholar]
  19. Holzmann H., Mandl C. W., Guirakhoo F., Heinz F. X., Kunz C. 1989; Characterization of antigenic variants of tick-borne encephalitis virus selected with neutralizing monoclonal antibodies. Journal of General Virology 70:219–222
    [Google Scholar]
  20. Holzmann H., Heinz F. X., Mandl C. W., Guirakhoo F., Kunz C. 1990; A single amino acid substitution in the envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. Journal of Virology 64:5156–5159
    [Google Scholar]
  21. Holzmann H., Utter G., Norrby E., Mandl C. W., Kunz C., Heinz F. X. 1993; Assessment of the antigenic structure of tick-borne encephalitis virus by the use of synthetic peptides. Journal of General Virology 74:2031–2035
    [Google Scholar]
  22. Holzmann H., Stiasny K., York H., Dorner F., Kunz C., Heinz F. X. 1995; Tick-borne encephalitis virus envelope protein E-specific monoclonal antibodies for the study of low pH-induced conformational changes and immature virions. Archives of Virology 140:213–222
    [Google Scholar]
  23. Jennings A. D., Whitby J. E., Minor P. D., Barrett A. D. T. 1993; Comparison of the nucleotide and deduced amino acid sequences of the envelope protein genes of the wild-type French viscerotropic strain of yellow fever virus and the live vaccine strain, French neurotropic vaccine, derived from it. Virology 192:692–695
    [Google Scholar]
  24. Jennings A. D., Gibson C. A., Miller B. R., Mathews J. H., Mitchell C. J., Roehrig J. T., Wood D. J., Taffs F., Sil B. K., Whitby S. N., Whitby J. E., Monath T. P., Minor P. D., Sanders P. G., Barrett A. D. T. 1994; Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. Journal of Infectious Diseases 169:512–518
    [Google Scholar]
  25. Jiang W. R., Lowe A., Higgs S., Reid H., Gould E. A. 1993; Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neuro virulence. Journal of General Virology 74:931–935
    [Google Scholar]
  26. Kaluzova M., Eleckova E., Zuffova E., Pastorek J., Kaluz S., Kozuch O., Labuda M. 1994; Reverted virulence of attenuated tick-borne encephalitis virus mutant is not accompanied with the changes in deduced viral envelope protein amino acid sequence. Acta Virologica 38:133–140
    [Google Scholar]
  27. Kawano H., Rostapshov V., Rosen L., Lai C.-J. 1993; Genetic determinants of dengue type 4 virus neurovirulence for mice. Journal of Virology 67:6567–6576
    [Google Scholar]
  28. Kopezky J., Krivanec K., Tomkova E. 1991; Attenuated temperature-sensitive mutants of tick-borne encephalitis (TBE) virus isolated from natural focus. In Modern Acarology (Academia Prague andSPB) vol 2 pp 11–19 Edited by Dusbabek F., Bukva V. The Hague: Academic Publishing bv;
    [Google Scholar]
  29. Lai C.-J., Men R., Pethel M., Bray M. 1992; Infectious RNA transcribed from stably cloned dengue virus cDNA: Construction of growth-restricted dengue virus mutants. In Vaccines 92. Modern Approaches to New Vaccines Including Prevention of AIDS pp 265–270 CSH Laboratory Press
    [Google Scholar]
  30. Lobigs M., Usha R., Nestorowicz A., Marshall I. D., Weir R. C., Dalgarno L. 1990; Host cell selection of Murray valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176:587–595
    [Google Scholar]
  31. McMinn P. C., Lee E., Hartley S., Roehrig J. T., Dalgarno L., Weir R. C. 1995a; Murray valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology 211:10–20
    [Google Scholar]
  32. McMinn P. C., Marshall I. D., Dalgarno L. 1995b; Neurovirulence and neuroinvasiveness of Murray valley encephalitis virus mutants selected by passage in a monkey kidney cell line. Journal of General Virology 76:865–872
    [Google Scholar]
  33. Mandl C. W., Heinz F. X., Kunz C. 1988; Sequence of the structural proteins of tick-borne encephalitis virus (Western subtype) and comparative analysis with other flaviviruses. Virology 166:197–205
    [Google Scholar]
  34. Mandl C. W., Guirakhoo F., Holzmann H., Heinz F. X., Kunz C. 1989a; Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. Journal of Virology 63:564–571
    [Google Scholar]
  35. Mandl C. W., Heinz F. X., Stockl E., Kunz C. 1989b; Genome sequence of tick-borne encephalitis virus (Western subtype) and comparative analysis of nonstructural proteins with other flaviviruses. Virology 173:291–301
    [Google Scholar]
  36. Mandl C. W., Heinz F. X., Puchhammer-Stockl E., Kunz C. 1991a; Sequencing the termini of capped viral RNA by 5′-3′ ligation and PCR. BioTechniques 10:485–486
    [Google Scholar]
  37. Mandl C. W., Kunz C., Heinz F. X. 1991b; Presence of poly(A) in a flavivirus: significant differences between the 3′ noncoding regions of the genomic RNAs of tick-borne encephalitis virus strains. Journal of Virology 65:4070–4077
    [Google Scholar]
  38. Mandl C. W., Holzmann H., Kunz C., Heinz F. X. 1993; Complete genomic sequence of Powassian virus: Evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology 194:173–184
    [Google Scholar]
  39. Monath T. P. 1990; Flaviviruses. In Virology pp 763–814 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  40. Ni H., Burns N. J., Chang G.-J. J., Zhang M.-J., Wills M. R., Trent D. W., Sanders P. G., Barrett A. D. T. 1994; Comparison of nucleotide and deduced amino acid sequence of the 5′ non-coding region and structural protein genes of the wild-type Japanese encephalitis virus strain SA14 and its attenuated vaccine derivatives. Journal of General Virology 75:1505–1510
    [Google Scholar]
  41. Ni H. L., Chang G.-J. J., Xie H., Trent D. W., Barrett A. D. T. 1995; Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. Journal of General Virology 76:409–413
    [Google Scholar]
  42. Nitayaphan S., Grant J. A., Chang G.-J. J., Trent D. W. 1990; Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology 177:541–552
    [Google Scholar]
  43. Pletnev A. G., Bray M., Lai C.-J. 1993; Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice. Journal of Virology 67:4956–4963
    [Google Scholar]
  44. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375:291–298
    [Google Scholar]
  45. Sumiyoshi H., Tignor G. H., Shope R. E. 1995; Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. Journal of Infectious Diseases 171:1144–1151
    [Google Scholar]
  46. Theiler M., Smith H. H. 1937; Use of yellow fever virus modified by in vitro cultivation for human immunization. Journal of Experimental Medicine 65:787–800
    [Google Scholar]
  47. Wallner G., Mandl C. W., Kunz C., Heinz F. X. 1995; The flavivirus 3′-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology 213:169–178
    [Google Scholar]
  48. Wengler G., Bradley D. W., Collett M. S., Heinz F. X., Schlesinger R. W., Strauss J. H. 1995; Flaviviridae. In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses pp 415–427 Edited by Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Vienna & New York: Springer-Verlag;
    [Google Scholar]
  49. Westaway E. G., Brinton M. A., Gaidamovitch S. Y., Horzinek M. C., Igarashi A., Kaariainen L., Lvov D. K., Porterfield J. S., Russel P. K., Trent D. W. 1985; Flaviviridae. Intervirology 24:183–192
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-5-1035
Loading
/content/journal/jgv/10.1099/0022-1317-77-5-1035
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error