1887

Abstract

The influenza virus RNA polymerase consists of a heterotrimeric complex of the PB1, PB2 and PA proteins, with the PB2 subunit responsible for recognizing 5′ cap structures on the host cell RNAs used as primers for virus mRNA synthesis. To investigate further the role PB2 plays in mRNA synthesis, a set of polyclonal antisera raised against defined regions of the protein were tested for their ability to inhibit the virion transcriptase. All five sera were of sufficient titre to immunoprecipitate PB2 and four were capable of recognizing polymerase complexes containing PB1 and PA. However, only the serum raised against the carboxy terminus of PB2 (F5) substantially inhibited polymerase activity. This serum drastically reduced synthesis primed by globin mRNA, but only partially inhibited transcription primed by the dinucleotide ApG, or ApG and cap analogue. The preferential inhibition of globin-primed synthesis did not result from interference with cap recognition, as serum F5 did not reduce labelling of PB2 in a photoaffinity cap-binding assay. However, IgG and Fab fragments from F5 were found to inhibit virion endonuclease activity. This suggests that the C terminus of PB2 plays a crucial role in transcription initiation and implicates PB2 in endonuclease activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-5-1025
1996-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/5/JV0770051025.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-5-1025&mimeType=html&fmt=ahah

References

  1. Barcena J., Ochoa M., De La Luna S., Melero J. A., Nieto A., Órtín J., Portela A. 1994; Monoclonal antibodies against influenza virus PB2 and NP polypeptides interfere with the initiation step of viral rnRNA synthesis in vitro. Journal of Virology 68:6900–6909
    [Google Scholar]
  2. Barrett T., Inglis S. C. 1985; Growth, purification and titration of influenza viruses. In Virology, A Practical Approach pp 119–150 Edited by Mahy B. W. J. Oxford: IRL Press;
    [Google Scholar]
  3. Biswas S. K., Nayak D. P. 1994; Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. Journal of Virology 68:1819–1826
    [Google Scholar]
  4. Blaas D., Patzelt E., Kuechler E. 1982a; Cap recognising protein of influenza virus. Virology 116:339–348
    [Google Scholar]
  5. Blaas D., Patzelt E., Kuechler E. 1982b; Identification of the cap binding protein of influenza virus. Nucleic Acids Research 10:4803–4812
    [Google Scholar]
  6. Bouloy M., Morgan M. A., Shatkin A. J., Krug R. M. 1979; Cap and internal nucleotides of reovirus mRNA primers are incorporated into influenza viral complementary RNA during transcription in vitro. Journal of Virology 32:895–904
    [Google Scholar]
  7. Bouloy M., Plotch S. J., Krug R. M. 1980; Both the 7-methyl and the 2′-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proceedings of the National Academy of Sciences, USA 77:3952–3956
    [Google Scholar]
  8. Braam J., Ulmanen I., Krug R. M. 1983; Molecular model of a eukaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34:609–618
    [Google Scholar]
  9. Brierley I., Boursnell M. E. G., Binns M. M., Bilimoria B., Blok V. C., Brown T. D. K., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase encoding region of the coronavirus IBV. EMBO Journal 6:3779–3785
    [Google Scholar]
  10. Chung T. D. Y., Cianci C., Hagen M., Terry B., Matthews J. T., Krystal M., Colonno R. J. 1994; Biochemical studies on capped RNA primers identify a class of oligonucleotide inhibitors of the influenza virus RNA polymerase. Proceedings of the National Academy of Sciences, USA 91:2372–2376
    [Google Scholar]
  11. Cianci C., Tiley L., Krystal M. 1995; Differential activation of the influenza virus polymerase by template RNA binding. Journal of Virology 69:3995–3999
    [Google Scholar]
  12. Colman A. 1984; Translation of eukaryotic messenger RNA in Xenopus oocytes. In Transcription and Translation. A Practical Approach pp 271–302 Edited by Hames B. D., Higgins S. J. Oxford: IRL Press;
    [Google Scholar]
  13. De La Luna S., Martinez C., Ortin J. 1989; Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. Virus Research 13:143–156
    [Google Scholar]
  14. Detjen B. M., St Angelo C., Katze M. G., Krug R. M. 1987; The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex. Journal of Virology 61:16–22
    [Google Scholar]
  15. Digard P., Blok V. C., Inglis S. C. 1989; Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes. Virology 171:162–169
    [Google Scholar]
  16. Hagen M., Chung T. D. Y., Butcher J. A., Krystal M. 1994; Recombinant influenza virus polymerase: requirement of both 5′ and 3′ viral ends for endonuclease activity. Journal of Virology 68:1509–1515
    [Google Scholar]
  17. Hanecak R., Semler B. L., Anderson C. W., Wimmer E. 1982; Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3–7c inhibit cleavage at glutamine-glycine pairs. Proceedings of the National Academy of Sciences, USA 79:3973–3977
    [Google Scholar]
  18. Honda A., Mizumoto K., Ishihama A. 1986; RNA polymerase of influenza virus: dinucleotide-primed initiation of transcription at specific positions on viral RNA. Journal of Biological Chemistry 261:5987–5991
    [Google Scholar]
  19. Huang T.-S., Palese P., Krystal M. 1990; Determination of influenza virus proteins required for genome replication. Journal of Virology 64:5669–5673
    [Google Scholar]
  20. Kawakami K., Mizumoto K., Ishihama A., Shinozaki-Yamaguchi K., Miura K. 1985; Activation of influenza virus associated RNA polymerase by cap structure (m7GpppNm). Journal of Biochemistry 97:655–661
    [Google Scholar]
  21. Kendal A. P., Cox N. J., Galphin J. C., Massab H. F. 1979; Comparative studies of wild-type and cold mutant (temperature sensitive) influenza viruses: independent segregation of temperaturesensitivity of virus replication from temperature-sensitivity of virion transcriptase activity during recombination of mutant A/Ann Arbor/6/60 with wild-type H3N2 strains. Journal of General Virology 44:443–456
    [Google Scholar]
  22. Kobayashi M., Tuchiya K., Nagata K., Ishihama A. 1992; Reconstitution of influenza virus RNA polymerase from three subunits expressed using recombinant baculovirus system. Virus Research 22:235–245
    [Google Scholar]
  23. Krieg P. A., Melton D. A. 1984; Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Research 12:7057–7071
    [Google Scholar]
  24. Krug R. M., Alonso-Caplen F. V., Julkunen I., Katze M. G. 1989; Expression and replication of the influenza virus genome. In The Influenza Viruses pp 89–152 Edited by Krug R. M. New York: Plenum Press;
    [Google Scholar]
  25. Li X., Palese P. 1994; Characterization of the polyadenylation signal of influenza virus RNA. Journal of Virology 68:1245–1249
    [Google Scholar]
  26. Luo G., Luytes W., Enami M., Palese P. 1991; The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. Journal of Virology 65:2861–2867
    [Google Scholar]
  27. McGeoch D., Kitron N. 1975; Influenza virion RNA-dependent RNA polymerase: stimulation by guanosine and related compounds. Journal of Virology 15:686–695
    [Google Scholar]
  28. Mahy B. W. J. 1983; Mutants of influenza virus. In Genetics of Influenza Virus pp 192–254 Edited by Palese P., Kingsbury D. W. New York: Springer-Verlag;
    [Google Scholar]
  29. Nichol S. T., Penn C. R., Mahy B. W. J. 1981; Evidence for the involvement of influenza A (fowl plague Rostock) virus protein P2 in ApG and mRNA primed in vitro RNA synthesis. Journal of General Virology 57:407–413
    [Google Scholar]
  30. Ochoa M., Barcena J., De La Luna S., Melero J. A., Douglas A. R., Nieto A., Ortin J., Skehel J. J., Portela A. 1995; Epitope mapping of cross-reactive monoclonal antibodies specific for the influenza A virus PA and PB2 polypeptides. Virus Research 37:305–315
    [Google Scholar]
  31. Parvin J. D., Palese P., Honda A., Ishihama A., Krystal M. 1989; Promoter analysis of influenza virus RNA polymerase. Journal of Virology 63:5142–5152
    [Google Scholar]
  32. Penn C. R., Blaas D., Kuechler E., Mahy B. W. J. 1982; Identification of the cap binding protein of two strains of influenza A/FPV. Journal of General Virology 62:177–180
    [Google Scholar]
  33. Penn C. R., Mahy B. W. J. 1984; Capped mRNAs may stimulate the influenza virus polymerase by allosteric modulation. Virus Research 1:1–13
    [Google Scholar]
  34. Plotch S. J., Krug R. M. 1977; Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid containing complementary RNA. Journal of Virology 21:24–34
    [Google Scholar]
  35. Plotch S. J., Bouloy M., Krug R. M. 1979; Transfer of 5′-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proceedings of the National Academy of Sciences, USA 76:1618–1622
    [Google Scholar]
  36. Plotch S. J., Bouloy M., Ulmanen I., Krug R. M. 1981; A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858
    [Google Scholar]
  37. Romanos M. A., Hay A. J. 1984; Identification of the influenza virus transcriptase by affinity-labeling with pyridoxal 5′-phosphate. Virology 132:110–117
    [Google Scholar]
  38. Shi L., Summers D. F., Peng Q., Galarza J. M. 1995; Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme. Virology 208:38–47
    [Google Scholar]
  39. Somogyi P., Jenner A. J., Brierley I., Inglis S. C. 1993; Ribosomal pausing during translation of an RNA pseudoknot. Molecular and Cellular Biology 13:6931–6940
    [Google Scholar]
  40. Stridh S., Oberg B., Chattopadhyaya J., Josephson S. 1981; Functional analysis of influenza RNA polymerase activity by the use of caps, oligonucleotides and polynucleotides. Antiviral Research 1:97–105
    [Google Scholar]
  41. Szewczyk B., Laver W. G., Summers D. F. 1988; Purification, thioredoxin renaturation, and reconstituted activity of the three subunits of the influenza A virus RNA polymerase. Proceedings of the National Academy of Sciences, USA 85:7907–7911
    [Google Scholar]
  42. Ulmanen I., Broni B. A., Krug R. M. 1981; Role of two of the influenza virus core P proteins in recognising cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription. Proceedings of the National Academy of Sciences, USA 78:7355–7359
    [Google Scholar]
  43. Young J. F., Desselberger U., Graves P., Palese P., Shatzman A., Rosenberg M. 1983; Cloning and expression of influenza virus genes. In The Origin of Pandemic Influenza Viruses pp 129–138 Edited by Laver W. G. Amsterdam: Elsevier Science;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-5-1025
Loading
/content/journal/jgv/10.1099/0022-1317-77-5-1025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error