The attachment glycoprotein G plays a major role in the antigenic variability of respiratory syncytial (RS) virus. We have expressed from recombinant baculoviruses antigenic group A and group B RS virus G proteins (designated bacAG for the group A and bacBG for the group B virus G protein). The insect cell-produced G proteins migrated more rapidly in SDS-PAGE as compared to HEp-2 cell-derived G proteins owing to glycosylation differences. Antigenicity was tested by immunofluorescence; five of five group cross-reactive, five of six group A-specific, and six of six group B-specific MAbs reacted appropriately with bacAG and/or bacBG. In addition, bacAG and bacBG reacted with human polyclonal antibodies to RS virus. Cotton rats were immunized with bacAG, bacBG or a control lysate and challenged intranasally with a group A RS virus. The bacAG-immunized group had a statistically significant reduction in viral replication in the lungs (lung titres as mean log p.f.u./g ± , bacAG = 3.1 ± 1.2; control = 4.8 ± 0.6, = 0.013). The bacBG-immunized group showed less reduction in viral titres (bacBG lung titres = 4.1 ± 0.6, = 0.13 for bacBG compared to control). Thus, as expected, homologous protein (bacAG) immunization provided more protection against viral replication than immunization with the heterologous protein (bacBG). The G protein of RS virus expressed in insect cells had antigenic and immunogenic features which were similar to that of the G protein expressed in mammalian cells. The baculovirus-expressed G proteins should be useful for the study of immune responses to RS viruses.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error