Two related glycoproteins (G and G) encoded in the bovine ephemeral fever virus (BEFV) genome were expressed from recombinant vaccinia viruses (rVV). Both proteins were detected in lysates of rVV-infected cells by labelling with -[6-H]glucosamine or by immuno-blotting. The recombinant G protein (mol. mass 79 kDa) appeared slightly smaller than the native G protein but reacted with monoclonal antibodies directed against all defined neutralizing antigenic sites (G1, G2, G3a, G3b and G4). The recombinant G protein (mol. mass 90 kDa) was identical in size to the native G protein and failed to react by immunofluorescence with anti-G protein monoclonal or polyclonal antibodies. Antisera raised in rabbits against rVV-G or rVV-G both reacted strongly by immunofluorescence and immuno-electron microscopy with BEFV-infected cells. The G protein was localized intracellularly in the endoplasmic reticulum/Golgi complex and at the cell surface associated with budding and mature virus particles. The G protein also localized intracellularly in the endoplasmic reticulum/Golgi complex; however, at the cell surface it was associated with amorphous structures and not with budding or mature virions. Rabbits vaccinated with rVV-G developed high levels of antibodies which neutralized BEFV grown in either mammalian or insect cells. Cattle vaccinated with rVV-G also produced neutralizing antibodies and were protected against experimental BEFV infection. In contrast, rVV-G vaccinated rabbits and cattle failed to produce neutralizing antibodies and, after challenge, BEFV was isolated from two-thirds of the vaccinated cattle.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error