1887

Abstract

The genome of cassava common mosaic potexvirus (CsCMV) has been sequenced from cDNA clones and consists of 6376 nucleotides (nt). A 76 nt untranslated region (UTR) at the 5′ terminus was followed by ORF1 which potentially encodes a protein of 1449 amino acids (aa). ORFs 2, 3, and 4 were predicted to encode proteins of 231, 112 and 97 aa, respectively. ORF5 potentially encodes a 229 aa protein of 25 kDa that is similar to the coat proteins of other potexviruses. The 3′-terminal UTR of 114 nt was followed by a poly(A) tail. The genomic organization of the CsCMV genome is similar to that of other potexviruses. A cDNA clone that was apparently obtained from a defective RNA species contained both the 5′ and 3′ UTRs and an ORF that potentially encodes the first 263 aa of ORF1 and the last 33 aa of the coat protein. Defective RNA species were found both in purified preparations of the virus and in total nucleic acid isolated from CsCMV-infected plants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-3-525
1996-03-01
2024-03-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/3/JV0770030525.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-3-525&mimeType=html&fmt=ahah

References

  1. Bancroft J. B., Rouleau M., Johnston R., Prins L., Mackie G. A. 1991; The entire nucleotide sequence of foxtail mosaic virus RNA. Journal of General Virology 72:2173–2181
    [Google Scholar]
  2. Beck D. L., Guilford P. J., Voot D. M., Andersen M. T., Forster R. L. S. 1991; Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183:695–702
    [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., Macdonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  4. Costa A. S., Kitajima E. W. 1972; Cassava common mosaic virus. CMI/AAB Descriptions of Plant Viruses No 90
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  6. Forster R. L. S., Bevan M. W., Harbison S. A., Gardner R. C. 1988; The complete sequence of the potexvirus white clover mosaic virus. Nucleic Acids Research 16:291–303
    [Google Scholar]
  7. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  8. Guilford P. J., Beck D. L., Forster R. L. S. 1991; Influence of the poly(A) tail and putative polyadenylation signal on the infectivity of white clover mosaic potexvirus. Virology 182:61–67
    [Google Scholar]
  9. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  10. Huisman M. J., Linthorst H. J. M., Bol J. F., Cornelissen B. J. C. 1988; The complete nucleotide sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. Journal of General Virology 69:1789–1798
    [Google Scholar]
  11. Jelkmann W., Maiss E., Martin R. R. 1992; The nucleotide sequence and genome organization of strawberry mild yellow edge-associated potexvirus. Journal of General Virology 73:475–479
    [Google Scholar]
  12. Kitajima E. W., Wetter C., Oliveira A. R., Silva D. M., Costa A. S. 1965; Morfologia do virus do mosaico comun da mandioca. Bragantia 24:247–260
    [Google Scholar]
  13. Memelink J., Van Der Vlugt C. I. M., Linthorst H. J. M., Derks A. F. L. M., Asjes C. J., Bol J. F. 1990; Homologies between the genomes of a carlavirus (lily symptomless virus) and a potexvirus (lily virus X) from lily plants. Journal of General Virology 71:917–924
    [Google Scholar]
  14. Nolt B. L., Velasco A. C., Pineda B. 1991; Improved purification procedure and some serological and physical properties of cassava common mosaic virus from South America. Annals of Applied Biology 118:105–113
    [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  16. Sit T. L., Abouhaidar M. G., Holy S. 1989; Nucleotide sequence of papaya mosaic virus RNA. Journal of General Virology 70:2325–2331
    [Google Scholar]
  17. Sit T. L., White K. A., Holy S., Padmanabhan U., Eweida M., Hiebert M., Mackie G. A. Abouhaidar M. G. 1990; Complete nucleotide sequence of clover yellow mosaic virus RNA. Journal of General Virology 71:1913–1920
    [Google Scholar]
  18. Thompson W. F., Everett M., Polans N. O., Jorgensen R. A., Palmer J. D. 1983; Phytochrome control of RNA levels in developing pea and mung-bean leaves. Planta 158:487–500
    [Google Scholar]
  19. White K. A., Bancroft J. B., Mackie G. A. 1991; Defective RNAs of clover yellow mosaic virus encode nonstructural/coat protein fusion products. Virology 183:479–486
    [Google Scholar]
  20. Zuidema A., Linthorst D. M. J., Huisman H. J. M., Asjes C. J., Bol J. F. 1989; Nucleotide sequence of narcissus mosaic virus RNA. Journal of General Virology 70:267–276
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-3-525
Loading
/content/journal/jgv/10.1099/0022-1317-77-3-525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error