Genetic manipulation of non-segmented negative-strand RNA viruses Free

Abstract

Introduction. Negative-strand RNA viruses are a large and diverse group of enveloped viruses of both medical and economic significance. They are found in hosts from the plant and animal kingdoms, and have a wide range of morphologies, biological properties and genome organizations. A major distinction is made between viruses whose genome consists of a single RNA molecule (order ), including the families and , and those possessing multipartite (segmented) genomes, comprising the families (six to nine segments), (three segments) and (two segments) (Pringle, 1991). Particular elements essential for their replication and gene expression have been retained throughout the negative-strand RNA viruses and illustrate that they have originated from a common ancestor (for review see Tordo ., 1992). Genetic manipulation and analysis of negative-strand RNA virus biology has lagged far behind that of other RNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-3-381
1996-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/3/JV0770030381.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-3-381&mimeType=html&fmt=ahah

References

  1. Andino R., Silvera D., Suggett S. D., Achacoso P. L., Miller C. J., Baltimore D., Feinberg M. B. 1994; Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265:1448–1451
    [Google Scholar]
  2. Ball L. A. 1992; Cellular expression of a functional nodavirus RNA replicon from vaccinia virus vectors. Journal of Virology 66:2335–2345
    [Google Scholar]
  3. Ball L. A. 1995; Fidelity of homologous recombination in vaccinia virus DNA. Virology 209:688–691
    [Google Scholar]
  4. Baltimore D., Huang A. S., Stampfer M. 1970; Ribonucleic acid synthesis of vesicular stomatitis virus, II. An RNA polymerase in the virion. Proceedings of the National Academy of Sciences, U.S.A. 66:572–576
    [Google Scholar]
  5. Banerjee A. K. 1987; Transcription and replication of rhabdo-viruses. Microbiological Reviews 51:66–87
    [Google Scholar]
  6. Baudin F., Bach C., Cusack S., Ruigrok R. W. 1994; Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO Journal 13:3158–3165
    [Google Scholar]
  7. Boyer J.-C., Haenni A.-L. 1994; Infectious transcripts and cDNA clones of RNA viruses. Virology 198:415–426
    [Google Scholar]
  8. Bredenbeek P. J., Rice C. M. 1992; Animal RNA virus expression systems. Seminars in Virology 3:297–310
    [Google Scholar]
  9. Calain P., Roux L. 1993; The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. Journal of Virology 67:4822–4830
    [Google Scholar]
  10. Calain P., Roux L. 1995; Functional characterization of the genomic and antigenomic promoters of Sendai virus. Virology 212:163–173
    [Google Scholar]
  11. Calain P., Curran J., Kolakofsky D., Roux L. 1992; Molecular cloning of natural paramyxovirus copy-back defective interfering RNAs and their expression from DNA. Virology 191:62–71
    [Google Scholar]
  12. Collins P. L., Mink M. A., Stec D. S. 1991; Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proceedings of the National Academy of Sciences, U.S.A 88:9663–9667
    [Google Scholar]
  13. Collins P. L., Mink M. A., Hill M. G. III, Camargo E., Grosfeld -H., Stec D. S. 1993; Rescue of a 7502–nucleotide (49.3 % of full-length) synthetic analog of respiratory syncytial virus genomic RNA. Virology 195:252–256
    [Google Scholar]
  14. Conzelmann K. K., Schnell M. 1994; Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. Journal of Virology 68:713–719
    [Google Scholar]
  15. Conzelmann K.-K., Cox J.-H., Schneider L. G., Thiel H. J. 1990; Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175:485–499
    [Google Scholar]
  16. Conzelmann K.-K., Cox J.-H., Thiel H. J. 1991; An L (polymerase) deficient rabies virus defective interfering particle RNA is replicated and transcribed by heterologous helper virus L proteins. Virology 184:655–663
    [Google Scholar]
  17. Curran J. A., Boeck R., Kolakofsky D. 1991; The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis by shuffling modules via mRNA editing. EMBO Journal 10:3079–3085
    [Google Scholar]
  18. Davison A. J., Moss B. 1989; Structure of vaccinia virus early promoters. Journal of Molecular Biology 210:749–769
    [Google Scholar]
  19. De B. P., Banerjee A. K. 1993; Rescue of synthetic analogs of genome RNA of human parainfluenza virus type 3. Virology 196:344–348
    [Google Scholar]
  20. Dimock K., Collins P. L. 1993; Rescue of synthetic analogs of genomic RNA and replicative-intermediate RNA of human parainfluenza virus type 3. Journal of Virology 67:2772–2778
    [Google Scholar]
  21. Dunn E. F., Pritlove D. C., Jin H., Elliott R. M. 1995; Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211:133–143
    [Google Scholar]
  22. Enami M., Luytjes W., Krystal M., Palese P. 1990; Introduction of site-specific mutations into the genome of influenza virus. Proceedings of the National Academy of Sciences, USA 87:3802–3805
    [Google Scholar]
  23. Engelhorn M., Stricker R., Roux L. 1993; Molecular cloning and characterization of a Sendai virus internal deletion defective RNA. Journal of General Virology 74:137–141
    [Google Scholar]
  24. Evans D. H., Stuart D., McFadden G. 1988; High levels of genetic recombination among cotransfected plasmid DNAs in poxvirus-infected mammalian cells. Journal of Virology 62:367–375
    [Google Scholar]
  25. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  26. Galinski M. S. 1991; Paramyxoviridae: transcription and replication. Advances in Virus Research 39:129–162
    [Google Scholar]
  27. Garcia–Sastre A., Palese P. 1993; Genetic manipulation of negative strand RNA virus genomes. Annual Review of Microbiology 47:765–790
    [Google Scholar]
  28. Garcin D., Pelet T., Calain P., Sakai Y., Shioda T., Roux L., Curran J., Kolakofsky D. 1996; A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA; generation of a novel copy-back nondefective interfering virus. EMBO Journal (in press)
    [Google Scholar]
  29. Gershon P. D., Ahn B. Y., Garfield M., Moss B. 1991; Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. Cell 66:1269–1278
    [Google Scholar]
  30. Grosfeld H., Hill M. G., Collins P. L. 1995; RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. Journal of Virology 69:5677–5686
    [Google Scholar]
  31. Harty R. N., Palese P. 1995; Mutations within noncoding terminal sequences of model RNAs of Sendai virus: influence on reporter gene expression. Journal of Virology 69:5128–5131
    [Google Scholar]
  32. Horikami S. M., Curran J., Kolakofsky D., Moyer S. A. 1992; Complexes of Sendai virus NP–P and P-L proteins are required for defective interfering particle genome replication in vitro. Journal of Virology 66:4901–4908
    [Google Scholar]
  33. Jacques J. P., Hausmann S., Kolakofsky D. 1994; Paramyxovirus mRNA editing leads to G deletions as well as insertions. EMBO Journal 13:5496–5503
    [Google Scholar]
  34. Kälin K., Spielhofer P., Schneider H., Radecke F., Kunz C., Sidhu M. S., Dowling P. C., Udem S. A., Billeter M. A. 1994; Requirements for artificial measles virus mini- and midireplicons. Abstracts of the IXth International Conference on Negative Strand Viruses2–7 October Estoril; Portugal:
    [Google Scholar]
  35. Kaptur P. E., McKenzie M. O., Wertz G. W., Lyles D. S. 1995; Assembly functions of vesicular stomatitis virus matrix protein are not disrupted by mutations at major sites of phosphorylation. Virology 206:894–903
    [Google Scholar]
  36. Kolakofsky D., Hacker D. 1991; Bunyavirus RNA synthesis: genome transcription and replication. Current Topics in Microbiology and Immunology 169:143–159
    [Google Scholar]
  37. Kuo L., Grosfeld H., Christina J., Atreya P., Collins P. 1994; Synthetic internal-deletion and copyback-minigenomes of human respiratory syncytial virus (RSV): RNA synthesis and cisacting sequences. Abstracts of the IXth International Conference on Negative Strand Viruses2–7 October Estoril; Portugal:
    [Google Scholar]
  38. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. 1995; Recombinant vesicular stomatitis viruses from DNA. Proceedings of the National Academy of Sciences, USA 92:4477–4481
    [Google Scholar]
  39. Lopez N., Müller R., Prehaud C., Bouloy M. 1995; The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. Journal of Virology 69:3972–3979
    [Google Scholar]
  40. Luytjes W., Krystal M., Enami M., Parvin J. D., Palese P. 1989; Amplification, expression, and packaging of a foreign gene by influenza virus. Cell 59:1107–1113
    [Google Scholar]
  41. Mebatsion T., Schnell M. J., Conzelmann K.-K. 1995; Mokola virus glycoprotein and chimeric proteins can replace rabies virus glycoprotein in the rescue of infectious defective rabies virus particles. Journal of Virology 69:1444–1451
    [Google Scholar]
  42. Mindich L. 1995; Heterologous recombination in the segmented dsRNA genome of bacteriophage f6. Seminars in Virology 6:75–83
    [Google Scholar]
  43. Moyer S., Smallwood-Kjentro S., Haddad A., Prevec L. 1991; Assembly and transcription of synthetic vesicular stomatitis virus nucleocapsids. Journal of Virology 65:2170–2178
    [Google Scholar]
  44. Owens R. J., Rose J. K. 1993; Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. Journal of Virology 67:360–365
    [Google Scholar]
  45. Park K. H., Krystal M. 1992; In vivo model for pseudo- templated transcription in Sendai virus. Journal of Virology 66:7033–7039
    [Google Scholar]
  46. Park K. H., Huang T., Correia F. F., Krystal M. 1991; Rescue of a foreign gene by Sendai virus. Proceedings of the National Academy of Sciences, USA 88:5537–5541
    [Google Scholar]
  47. Pattnaik A. K., Wertz G. W. 1990; Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. Journal of Virology 64:2948–2957
    [Google Scholar]
  48. Pattnaik A. K., Wertz G. W. 1991; Cells that express all five proteins of vesicular stomatitis virus from cloned cDNAs support replication, assembly, and budding of defective interfering particles. Proceedings of the National Academy of Sciences, USA 88:1379–1383
    [Google Scholar]
  49. Pattnaik A. K., Ball L. A., Legrone A. W., Wertz G. W. 1992; Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 69:1011–1020
    [Google Scholar]
  50. Pattnaik A. K., Ball L. A., Legrone A., Wertz G. W. 1995; The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles. Virology 206:760–764
    [Google Scholar]
  51. Perrotta A. T., Been M. D. 1990; The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturants. Nucleic Acids Research 18:6821–6827
    [Google Scholar]
  52. Perrotta A. T., Been M. D. 1991; A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature 350:434–436
    [Google Scholar]
  53. Plotch S. J., Bouloy M., Ulmanen I., Krug R. M. 1981; A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858
    [Google Scholar]
  54. Pringle C. R. 1991; The Mononegavirales. In Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses pp. 239–262 Edited by Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. Wien and New York: Springer-Verlag;
    [Google Scholar]
  55. Prody G. A., Bakos J. T., Buzayan J. M., Schneider I. R., Bruenning G. 1986; Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580
    [Google Scholar]
  56. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dotsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned cDNA. EMBO Journal 14:5773–5784
    [Google Scholar]
  57. Schnell M. J., Conzelmann K.-K. 1996; Polymerase activity of in vitro mutated rabies virus L protein. Virology (in press)
    [Google Scholar]
  58. Schnell M. J., Mebatsion T., Conzelmann K.-K. 1994; Infectious rabies viruses from cloned cDNA. EMBO Journal 13:4195–4203
    [Google Scholar]
  59. Sidhu M. S., Chan J., Kaelin K., Spielhofer P., Radecke F., Schneider H., Masurekar M., Dowling P. C., Billeter M. A., Udem S. A. 1995; Rescue of synthetic measles virus minireplicons: measles genomic termini direct efficient expression and propagation of a reporter gene. Virology 208:800–807
    [Google Scholar]
  60. Smallwood S., Moyer S. 1993; Promoter analysis of the vesicular stomatitis virus RNA polymerase. Virology 192:254–263
    [Google Scholar]
  61. Stillman E. A., Rose J. K., Whitt M. A. 1995; Replication and amplification of novel vesicular stomatitis virus minigenomes encoding viral structural proteins. Journal of Virology 69:2946–2953
    [Google Scholar]
  62. Tordo N., Dehaan P., Goldbach R., Poch O. 1992; Evolution of negative stranded RNA genomes. Seminars in Virology 3:341–357
    [Google Scholar]
  63. Vidal S., Kolakofsky D. 1989; Modified model for the switch from Sendai virus transcription to replication. Journal of Virology 63:1951–1958
    [Google Scholar]
  64. Wertz G. W., Melero J. A. 1993; Workshop on ‘reverse genetics of negative stranded RNA viruses’ sponsored by the Juan March Institute, Madrid, Spain. Virus Research 30:215–219
    [Google Scholar]
  65. Wertz G. W., Whelan S., Legrone A., Ball L. A. 1995; Extent of terminal complementarity modulates the balance between transcription and replication of vesicular stomatitis virus RNA. Proceedings of the National Academy of Sciences, USA 91:8587–8591
    [Google Scholar]
  66. Whelan S. P. J., Ball L. A., Barr J. N., Wertz G. W. 1995; Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proceedings of the National Academy of Sciences, USA 92:8388–8392
    [Google Scholar]
  67. Willenbrinck W., Neubert W. N. 1994; Long-term replication of Sendai virus defective interfering particle nucleocapsids in stable helper cell lines. Journal of Virology 68:8413–8417
    [Google Scholar]
  68. Yu Q., Hardy R. W., Wertz G. W. 1995; Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. Journal of Virology 692412–2419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-3-381
Loading
/content/journal/jgv/10.1099/0022-1317-77-3-381
Loading

Data & Media loading...

Most cited Most Cited RSS feed