1887

Abstract

Foot-and-mouth disease virus (FMDV) RNA utilizes two in-frame initiation codons to produce two precursor proteins with identical carboxy termini. The 5′ untranslated region (5′UTR) directs the ribosome to internal sequences without the need for a cap structure as used in host mRNAs. The FMDV 5′UTR was cloned upstream of the reporter gene chloramphenicol acetyltransferase (CAT) in order to study the selection of initiation site and to facilitate quantification of the translation products. After transcription with T7 RNA polymerase and translation in rabbit reticulocyte lysate, the two CAT products, resulting from initiation from the two initiation codons, were quantified. The downstream initiator AUG (AUG) was selected more efficiently in the wild-type 5′UTR. In truncated RNA, the upstream initiation site (AUG) was more efficiently utilized than in the wild-type 5′UTR. Protein synthesis initiation factors were added to translation assays to determine whether these factors influenced initiation site selection. Addition of eIF-2 and of eIF-2B changed the selection process for both types of RNA. These factors induced a 2.5-fold higher usage of the upstream AUG for wild-type and 5′UTR-truncated RNA. A change in mRNA concentration also induced a change in the usage of initiation codons; however, the effect of eIF-2 was measured over a broad range of mRNA concentrations. In conclusion, eIF-2 mediates the recognition of the initiation codon during both cap-dependent and internal ribosome entry site-dependent initiation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-2-265
1996-02-01
2023-02-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/2/JV0770020265.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-2-265&mimeType=html&fmt=ahah

References

  1. Belsham G. J. 1992; Dual initiation sites of protein synthesis on foot- and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo . EMBO Journal 11:1105–1110
    [Google Scholar]
  2. Belsham G. J., Brangwyn J. K. 1990; A region of the 5′ noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. Journal of Virology 64:5389–5395
    [Google Scholar]
  3. Bommer U. A., Lutsch G., Stahl J., Bielka H. 1991; Eukaryotic initiation factors eIF-2 and eIF-3: interaction, structure and localization in ribosomal initiation complexes. Biochimie 73:1007–1019
    [Google Scholar]
  4. Cavener D. R., Ray S. C. 1991; Eukaryotic start and stop translation sites. Nucleic Acids Research 19:3185–3192
    [Google Scholar]
  5. Cigan A. M., Feng L., Donahue T. F. 1988; tRNAMet functions in directing the scanning ribosome to the start site of translation. Science 242:93–97
    [Google Scholar]
  6. Cigan A. M., Pabich E. K., Feng L., Donahue T. F. 1989; Yeast translation initiation repressor sui2 encodes the a subunit of eukaryotic initiation factor 2 and shares sequence identity with the human α subunit. Proceedings of the National Academy of Sciences, USA 86:2784–2788
    [Google Scholar]
  7. Cigan A. M., Foiani M., Hannig E. M., Hinnebusch A. G. 1991; Complex formation by positive and negative translational regulators of GCN4. Molecular and Cellular Biology 11:3217–3228
    [Google Scholar]
  8. Clarke B. E., Sangar D. V., Burroughs J. N., Newton S. E., Carroll A. R., Rowlands D. J. 1985; Two initiation sites for foot-and-mouth disease virus polyprotein in vivo . Journal of General Virology 66:2615–2626
    [Google Scholar]
  9. Dasso M. C., Milburn S. C., Hershey J. W. B., Jackson R. J. 1990; Selection of the 5′-proximal translation initiation site is influenced by mRNA and eIF-2 concentrations. European Journal of Biochemistry 187:361–371
    [Google Scholar]
  10. Davies M. V., Kaufman R. J. 1992; The sequence context of the initiation codon in the encephalomyocarditis virus leader modulates efficiency of internal translation initiation. Journal of Virology 66:1924–1932
    [Google Scholar]
  11. Devaney M. A., Vakharia V. N., Lloyd R. E., Ehrenfeld E., Grubman M. J. 1988; Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the capbinding protein complex. Journal of Virology 62:4407–4409
    [Google Scholar]
  12. Dorris D. R., Erickson F. L., Hannig E. M. 1995; Mutations in GCD11, the structural gene for eIF-2 α in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO Journal 14:2239–2249
    [Google Scholar]
  13. Etchison D., Milburn S. C., Edery I., Sonenberg N., Hershey J. W. B. 1982; Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220, 000- dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. Journal of Biological Chemistry 257:148060–14810
    [Google Scholar]
  14. Hershey J. W. B. 1991; Translational control in mammalian cells. Annual Review of Biochemistry 60:717–755
    [Google Scholar]
  15. Jang S. K., Krausslich H.-G., Nicklin M. J. H., Duke G. M., Palmenberg A. C., Wimmer E. 1988; A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology 62:2636–2643
    [Google Scholar]
  16. Kaminski A., Howell M. T., Jackson R. J. 1990; Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO Journal 9:3753–3759
    [Google Scholar]
  17. Kozak M. 1991; An analysis of vertebrate mRNA sequences: intimations of translational control. Journal of Cell Biology 115:887–903
    [Google Scholar]
  18. Kozak M. 1992; A consideration of alternative models for the initiation of translation in eukaryotes. Critical Reviews in Biochemistry and Molecular Biology 27:385–402
    [Google Scholar]
  19. Kozak M., Shatkin A. J. 1978; Migration of 40S ribosomal subunits on messenger RNA in the presence of edeine. Journal of Biological Chemistry 253:6568–6577
    [Google Scholar]
  20. Kühn R., Luz N., Beck E. 1990; Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. Journal of Virology 64:4625–4631
    [Google Scholar]
  21. Oldfield S., Proud C. G. 1992; Purification, phosphorylation and control of the guanine-nucleotide-exchange factor from rabbit reticulocyte lysates. European Journal of Biochemistry 208:73–81
    [Google Scholar]
  22. Pelletier J., Sonenberg N. 1988; Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325
    [Google Scholar]
  23. Pilipenko E. V., Blinov V. M., Chernov B. K., Dmitrieva T. M., Maslova S. V., Agol V. I. 1989; Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Research 17:5701–5711
    [Google Scholar]
  24. Pilipenko E. V., Gmyl A. P., Maslova S. V., Svitkin Y. V., Sinyakov A. N., Agol V. I. 1992; Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picorna- virus RNA. Cell 68:119–131
    [Google Scholar]
  25. Proud C. G. 1992; Protein phosphorylation in translational control. Current Topics in Cellular Regulation 32:243–369
    [Google Scholar]
  26. Rhoads R. E. 1988; Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends in Biochemical Sciences 13:52–55
    [Google Scholar]
  27. Rozen F., Edery I., Meerovitch K., Dever T. E., Merrick W. C., Sonenberg N. 1990; Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Molecular and Cellular Biology 10:1134–1144
    [Google Scholar]
  28. Salimans M., Goumans H., Amesz H., Benne R., Voorma H. O. 1984; Regulation of protein synthesis in eukaryotes. European Journal of Biochemistry 145:91–98
    [Google Scholar]
  29. Sangar D. V., Newton S. E., Rowlands D. J., Clarke B. E. 1987; All foot-and-mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Research 15:3305–3315
    [Google Scholar]
  30. Sangar D. V., Clark R. P., Carroll A. R., Rowlands D. J., Clarke B. E. 1988; Modification of the leader protein (Lb) of foot-and-mouth disease virus. Journal of General Virology 69:2327–2333
    [Google Scholar]
  31. Scheper G. C., Thomas A. A. M., Voorma H. O. 1991; The 5´untranslated region of encephalomyocarditis virus contains a sequence for very efficient binding of eukaryotic initiation factor eIF- 2/2B. Biochimica et Biophysica Acta 1089:220–226
    [Google Scholar]
  32. Scheper G. C., Voorma H. O., Thomas A. A. M. 1992; Eukaryotic initiation factors -4E and -4F stimulate 5′ cap-dependent as well as internal initiation of protein synthesis. Journal of Biological Chemistry 267:7269–7274
    [Google Scholar]
  33. Sonenberg N. 1990; Poliovirus translation. Current Topics in Microbiology and Immunology 161:23–47
    [Google Scholar]
  34. Sonenberg N. 1991; Picornavirus RNA translation continues to surprise. Trends in Genetics 7:105–106
    [Google Scholar]
  35. Tesar M., Harmon S. A., Summers D. F., Ehrenfeld E. 1992; Hepatitis A virus polyprotein synthesis initiates from two alternative AUG codons. Virology 186:609–618
    [Google Scholar]
  36. Thach R. E. 1992; Cap recap: the involvement of eIF-4F in regulating gene expression. Cell 68:177–180
    [Google Scholar]
  37. Thomas A., Spaan W., Van Steeg H., Voorma H. O., Benne R. 1980; Mode of action of protein synthesis initiation factor eIF-1 from rabbit reticulocytes. FEBS Letters 116:67–71
    [Google Scholar]
  38. Thomas A. A. M., Scheper G. C., Voorma H. O. 1992; Hypothesis : is eukaryotic initiation factor 2 the scanning factor?. New Biologist 4:404–407
    [Google Scholar]
  39. Voorma H. O., Thomas A., Goumans H., Amesz H., van der Mast C. 1979; Isolation and purification of initiation factors of protein synthesis from rabbit reticulocyte lysate. Methods in Enzymology 60:124–135
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-2-265
Loading
/content/journal/jgv/10.1099/0022-1317-77-2-265
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error