1887

Abstract

The RNA genome of hepatitis A virus (HAV) encodes a giant polyprotein that is putatively cleaved proteolytically into four structural and seven non-structural proteins. So far, most of the proposed non-structural proteins and their respective cleavage sites have not been identified. A vaccinia virus recombinant (vRGORF) containing the complete HAV ORF under the control of the bacteriophage T7 promoter was used to express HAV in recombinant animal cells (BT7-H) that constitutively expressed T7 DNA-dependent RNA polymerase. A HAV-specific 27.5 kDa expression product was identified as peptide 2B. The 27.5 kDa 2B antigen was also found in HAV-infected MRC-5 cells. The N-terminal amino acid residues of the new peptide 2B are Ala-Lys-Ile-Ser-Leu-Phe and polyprotein cleavage between 2A and 2B occurred at amino acids 836–837 (Gln-Ala). Furthermore, heterologous expression in the same system of regions P1–P2 and of the protease 3C (3C) gene, showed that P1–P2 polyprotein is not cleaved autocatalytically but by 3C. Hence, 3C is effective in cleaving the polyprotein 2A–2B junction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-2-247
1996-02-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/2/JV0770020247.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-2-247&mimeType=html&fmt=ahah

References

  1. Anderson D. A., Ross B. C. 1990; Morphogenesis of hepatitis A virus: isolation and characterization of subviral particles. Journal of Virology 64:5284–5289
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1991 Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  3. Cho M. W., Ehrenfeld E. 1991; Rapid completion of the replication cycle of hepatitis A virus subsequent to reversal of guanidine inhibition. Virology 180:770–780
    [Google Scholar]
  4. Cohen J. I., Ticehurst J. R., Purcell R. H., Buckler-White A., Baroudy B. M. 1987a; Complete nucleotide sequence of wildtype hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses. Journal of Virology 61:50–59
    [Google Scholar]
  5. Cohen J. I., Rosenblum B., Ticehurst J. R., Daemer R. J., Feinstone S. M., Purcell R. H. 1987b; Complete nucleotide sequence of an attenuated hepatitis A virus: comparison with wildtype virus. Proceedings of the National Academy of Sciences, USA 84:2497–2501
    [Google Scholar]
  6. Cohen J. I., Rosenblum B., Feinstone S. M., Ticehurst J. R., Purcell R. H. 1989; Attenuation and cell culture adaptation of hepatitis A virus (HAV): a genetic analysis with HAV cDNA. Journal of Virology 63:5364–5370
    [Google Scholar]
  7. De Chastonay J., Siege G. 1987; Replicative events in hepatitis A virus-infected MRC-5 Cells. Virology 157:268–275
    [Google Scholar]
  8. Emerson S. U., Huang Y. K., Purcell R. H. 1993; 2B and 2C mutations are essential but mutations throughout the genome of HAV contribute to adaptation to cell culture. Virology 194:475–480
    [Google Scholar]
  9. Feinstone S. M., Kapikian A. Z., Purcell R. H. 1973; Hepatitis A: detection by immune electron microscopy of a virus like antigen associated with acute illness. Science 182:1026–1028
    [Google Scholar]
  10. Fuerst T. R., Earl P. L., Moss B. 1987; Use of a hybrid vaccinia virus–T7 RNA polymerase system for expression of target genes. Molecular and Cellular Biology 7:2538–2544
    [Google Scholar]
  11. Gauss-Müller V., Lottspeich F., Deinhardt F. 1986; Characterization of hepatitis A virus structural proteins. Virology 155:732–736
    [Google Scholar]
  12. Gauss-Müller V., Jürgensen D., Deutzmann R. 1991; Autoproteolytic cleavage of recombinant 3C proteinase of hepatitis A virus. Virology 182:861–864
    [Google Scholar]
  13. Gorbalenya A. E., Koonin E. V. 1989; Virus proteins containing the purine NTP-binding pattern. Nucleic Acids Research 17:8413–8440
    [Google Scholar]
  14. Harmon S. A., Updike W. S., Jia X.-Y., Summers D. F., Ehrenfeld E. 1992; Polyprotein processing in cis and in trans by hepatitis A virus 3C protease cloned and expressed in Escherichia coli . Journal of Virology 66:5242–5247
    [Google Scholar]
  15. Harmon S. A., Emerson S. U., Huang Y. K., Summers D. F., Ehrenfeld E. 1995; Hepatitis A viruses with deletions in the 2A gene are infectious in cultured cells and marmosets. Journal of Virology 69:5575–5581
    [Google Scholar]
  16. Horton R. M., Cai Z., Ho S. N., Pease L. R. 1990; Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques 8:528–535
    [Google Scholar]
  17. Jackson R. J. 1986; A detailed kinetic analysis of the in vitro synthesis and processing of encephalomyocarditis virus products. Virology 149:114–127
    [Google Scholar]
  18. Jenö P., Mini T., Moes S., Hintermann E., Horst M. 1995; Internal sequences from proteins digested in polyacrylamide gels. Analytical Biochemistry 224:75–82
    [Google Scholar]
  19. Jewell D. A., Swietnicki W., Dunn B. M., Malcolm B. A. 1992; Hepatitis A virus 3C proteinase substrate specificity. Biochemistry 31:7862–7869
    [Google Scholar]
  20. Jia X.-Y., Ehrenfeld E., Summers D. F. 1991; Proteolytic activity of hepatitis A virus 3C protein. Journal of Virology 65:2595–2600
    [Google Scholar]
  21. Jia X.-Y., Summers D. F., Ehrenfeld E. 1993; Primary cleavage of the HAV capsid protein precursor in the middle of the proposed 2A coding region. Virology 193:515–519
    [Google Scholar]
  22. Kong W. P., Ghadge G. D., Roos R. P. 1994; Involvement of cardiovirus leader in host cell-restricted virus expression. Proceedings of the National Academy of Sciences, USA 91:1796–1800
    [Google Scholar]
  23. Kusov Y. Y., Sommergruber W., Schreiber M., Gauss-Müller V. 1992; Intermolecular cleavage of hepatitis A virus (HAV) precursor protein P1-P2 by recombinant HAV proteinase 3C. Journal of Virology 66:6794–6796
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  25. Lemon S. M., Murphy P. C., Shields P. A., Ping L.-H., Feinstone S. M., Cromeans T., Jansen R. W. 1991; Antigenic and genetic variation in cytopathic hepatitis A virus variants arising during persistent infection: evidence for genetic recombination. Journal of Virology 65:2056–2065
    [Google Scholar]
  26. Linemeyer D. L., Menke J. G., Martin-Gallardo A., Hughes J. V., Young A., Mitra S. W. 1985; Molecular cloning and partial sequencing of hepatitis A viral cDNA. Journal of Virology 54:247–255
    [Google Scholar]
  27. Macadam A. J., Ferguson G., Fleming T., Stone D. M., Almond J. W., Minor P. D. 1994; Role for poliovirus protease 2A in cap independent translation. EMBO Journal 13:924–927
    [Google Scholar]
  28. Malcolm B. A., Chin S. M., Jewell D. A., Stratton-Thomas J. R., Thudium K. B., Ralston R., Rosenberg S. 1992; Expression and characterization of recombinant hepatitis A virus 3C proteinase. Biochemistry 31:3358–3363
    [Google Scholar]
  29. Minor P. D. 1991; Picornaviridae. In Classification and Nomenclature of Viruses Fifth Report of the International Committee on Taxonomy of Viruses pp 320–326 Edited by Francki R. I. B. Fauquet C. M., Knudson D. L., Brown F. Wien & New York: Springer Verlag;
    [Google Scholar]
  30. Najarian R., Caput D., Gee W., Potter S. J., Renard A., Merryweather J., van Nest G., Dina D. 1985; Primary structure and gene organization of human hepatitis A virus. Proceedings of the National Academy of Sciences, USA 82:2627–2631
    [Google Scholar]
  31. Nicklin M. J. H., Toyoda H., Murray M. G., Wimmer E. 1986; Proteolytic processing in the replication of polio and related viruses. BioTechnology 4:33–42
    [Google Scholar]
  32. Palmenberg A. C. 1990; Proteolytic processing of picornaviral polyprotein. Annual Reviews of Microbiology 44:603–623
    [Google Scholar]
  33. Pasamontes L., Gubser J., Wittek R., Viljoen G. J. 1991; Direct identification of recombinant vaccinia virus plaques by PCR. Journal of Virological Methods 35:137–141
    [Google Scholar]
  34. Provost P. J., Hilleman M. R. 1979; Propagation of human hepatitis A virus in cell culture in vitro . Proceedings of the Society for Experimental Biology and Medicine 160:213–221
    [Google Scholar]
  35. Ryan M. D., King A. M. Q., Thomas G. P. 1991; Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. Journal of General Virology 72:2727–2732
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Schultheiss T., Sommergruber W., Kusov Y., Gaussmuller V. 1995; Cleavage specificity of purified recombinant hepatitis a virus 3C proteinase on natural substrates. Journal of Virology 69:1727–1733
    [Google Scholar]
  38. Siegl G., Frosner G. G., Gauss-Müller V., Tratschin J. D., Deinhardt F. 1981; The physicochemical properties of infectious hepatitis A virion. Journal of General Virology 57:331–341
    [Google Scholar]
  39. Siegl G., Weitz M., Kronauer G. 1984a; Stability of hepatitis A virus. Intervirology 22:218–226
    [Google Scholar]
  40. Siegl G., De Chastonay J., Kronauer G. 1984b; Propagation and assay of hepatitis A virus in vitro . Journal ofVirological Methods 9:53–67
    [Google Scholar]
  41. Sommergruber W., Zorn M., Blaas D., Fessl F., Volkmann P., Maurer-Fogy I., Pallai P. V., Merluzzi V., Matteo M., Skern T., Kuechler E. 1989; Polypeptide 2A of human rhinovirus type 2: identification as a protease and characterization by mutational analysis. Virology 169:68–77
    [Google Scholar]
  42. Tesar M., Pak I., Jia X. Y., Richards O. C., Summers D. F., Ehrenfeld E. 1994; Expression of hepatitis A virus precursor protein P3 in vivo and in vitro- polyprotein processing of the 3CD cleavage site. Virology 198:524–533
    [Google Scholar]
  43. Ticehurst J. R., Cohen J. I., Feinstone S. M., Purcell R. H., Lemon S. M. 1989; Replication of hepatitis A virus: new ideas from studies with cloned cDNA. In Molecular Aspects of Picornavirus Infection and Detection pp 27–50 Edited by Seinler B. L., Ehrenfeld E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Toyoda H., Nicklin M. J. H., Murray M. G., Anderson C. W., Dunn J. J., Studier F. W., Wimmer E. 1986; A second virus- encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
  45. Urakawa T., Ferguson M., Minor P. D., Cooper J., Sullivan M., Almond J. W., Bishop D. H. L. 1989; Synthesis of immunogenic, but non-infectious, poliovirus particles in insect cells by a baculovirus expression vector. Journal of General Virology 70:1453–1463
    [Google Scholar]
  46. Vakharia V. N., Devaney M. A., Moore D. M., Dunn J. J., Grubman M. J. 1987; Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone- derived transcripts. Journal of Virology 61:3199–3207
    [Google Scholar]
  47. Weitz M., Siegl G. 1993; Hepatitis A virus: structure and molecular biology. In Viral Hepatitis pp 21–34 Edited by Zuckerman A. J., Thomas H. C. London: Churchill Livingstone;
    [Google Scholar]
  48. Weitz M., Baroudy B. M., Maloy W. L., Ticehurst J. R., Purcell R. H. 1986; Detection of a genome-linked protein (VPg) of hepatitis A virus and its comparison with other picornaviral VPgs. Journal of Virology 60:124–130
    [Google Scholar]
  49. Wheeler C. M., Robertson B. H., van Nest G., Dina D., Bradley D. W., Fields H. A. 1986; Structure of the hepatitis A virion: peptide mapping of the capsid region. Journal of Virology 58:307–313
    [Google Scholar]
  50. Whetter L. E., Day S. P., Elroy-Stein O., Brown E. A., Lemon S. M. 1994; Low efficiency of the 5′ nontranslated region of hepatitis A virus RNA in promoting cap-independent translation in permissive monkey kidney cells. Journal of Virology 68:5253–5263
    [Google Scholar]
  51. Winokur P. L., McLinden J. H., Stapleton J. T. 1991; The hepatitis A virus polyprotein expressed by a recombinant vaccinia virus undergoes proteolytic processing and assembly into viruslike particles. Journal of Virology 65:5029–5036
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-2-247
Loading
/content/journal/jgv/10.1099/0022-1317-77-2-247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error