1887

Abstract

We have prepared a MAb, 7C4, which inhibits the RNA-dependent DNA polymerase activity of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT); this MAb has allowed identification of a previously unknown neutralizing epitope of RT. Analysis of the epitope and of the mechanism of polymerase inhibition revealed that 7C4 acts by interfering with the interaction between RT and the template-primer. 7C4 recognizes a discontinuous epitope on the two α-helices, αH and αI, that make up the ‘thumb’ subdomain of RT. The existing crystallographic model of HIV-1 RT suggests that the ‘thumb’ subdomain, together with the ‘fingers’ and ‘palm’, form a nucleic-acid-binding cleft in the 66 kDa subunit of RT and that αH is in contact with the primer strand of the template-primer. The extent of inhibition of enzyme activity produced by 7C4 correlates with the reported primer-length-dependency of template-primer binding to RT. Inhibition by 7C4 was competitive with respect to the template-primer and mixed with respect to the substrate. Binding of 7C4 to RT was prevented by preincubation of the enzyme with high concentrations of template-primer but not with substrate. Thus, the 7C4 epitope apparently exists on part of the template-primer binding site of the αH and αI regions of the ‘thumb’ subdomain. This neutralization epitope is a logical target for the development of new types of HIV-1 RT inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-12-2921
1996-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/12/JV0770122921.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-12-2921&mimeType=html&fmt=ahah

References

  1. Basu A., Tirumalai R. S., Modak M. J. 1989; Substrate binding in human immunodeficiency virus reverse transcriptase: an analysis of pyridoxal 5′-phosphate sensitivity and identification of lysine 263 in the substrate-binding domain. Journal of Biological Chemistry 264:8746–8752
    [Google Scholar]
  2. Beard W. A., Stahl S. J., Kim H.-R., Bebenek K., Kumar A., Strub M.-P., Becerra S. P., Kunkel T. A., Wilson S. H. 1994; Structure/ function studies of human immunodeficiency virus type 1 reverse transcriptase: alanine scanning mutagenesis of an α-helix on the thumb subdomain. Journal of Biological Chemistry 269:28091–28097
    [Google Scholar]
  3. Boyer P. L., Tantillo C., Jacobo-Molina A., Nanni R. G., Ding J., Arnold E., Hughes S. H. 1994; Sensitivity of wild-type human immunodeficiency virus type 1 reverse transcriptase to dideoxy-nucleotides depends on template length; the sensitivity of drug-resistant mutant does not. Proceedings of the National Academy of Sciences, USA 91:4882–4886
    [Google Scholar]
  4. De Clercq E. 1992; HIV inhibitors targeted at the reverse transcriptase. AIDS Research and Human Retroviruses 8:119–134
    [Google Scholar]
  5. Ding J., Das K., Moereels H., Koymans L., Andries K., Janssen P. A. J., Hughes S. H., Arnold E. 1995; Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nature Structural Biology 2:407–415
    [Google Scholar]
  6. Esnouf R., Ren J., Ross C., Jones Y., Stammers D., Stuart D. 1995; Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Nature Structural Biology 2:303–308
    [Google Scholar]
  7. Fagerstam L. 1991; A non-label technology for real-time biospecific interaction analysis. In Techniques in Protein Chemistry II pp 65–71 New York: Academic Press;
    [Google Scholar]
  8. Ferns R. B., Partridge J. C., Tisdale M., Hunt N., Tedder R. S. 1991; Monoclonal antibodies define linear and conformational epitopes of HIV-1 pol gene products. AIDS Research and Human Retroviruses 7:307–313
    [Google Scholar]
  9. Ferris A. L., Hizi A., Showalter S. D., Pichuantes S., Babe L., Craik C. S., Hughes S. H. 1990; Immunological and proteolytic analysis of HIV-1 reverse transcriptase structure. Virology 175:456–464
    [Google Scholar]
  10. Friguet B., Djavadi-Ohaniance L., Goldberg M. E. 1989 In Protein Structure: A Practical Approach pp 287–310 Edited by Creighton T. E. New York: IRL Press;
    [Google Scholar]
  11. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. 1987; Strategies for epitope analysis using peptide synthesis. Journal of Immunological Methods 102:259–274
    [Google Scholar]
  12. Hansen J., Schulze T., Mellert W., Moeling K. 1988; Identification and characterization of HIV-specific RNase H by monoclonal antibody. EMBO Journal 7:239–243
    [Google Scholar]
  13. Harris H. 1984; Monoclonal antibodies to enzymes. In Monoclonal Antibodies and Functional Cell Lines: Progress and Application pp 33–65 Edited by Kennett R. H., Bechtol K. B., McKeam T. J. New York: Plenum Press;
    [Google Scholar]
  14. Hermann T., Meier T., Gotte M., Heumann H. 1994; The ‘helix clamp’ in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases. Nucleic Acids Research 22:4625–4633
    [Google Scholar]
  15. Hoffman A. D., Banapour B., Levy J. A. 1985; Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology 147:326–335
    [Google Scholar]
  16. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, USA 78:3824–3828
    [Google Scholar]
  17. Hoshikawa N., Kojima A., Yasuda A., Takayashiki E., Masuko S., Chiba J., Sata T., Kurata T. 1991; Role of the gag and pol genes of human immunodeficiency virus in the morphogenesis and maturation of retrovirus-like particles expressed by recombinant vaccinia virus: an ultrastructural study. Journal of General Virology 72:2509–2517
    [Google Scholar]
  18. Jacobo-Molina A., Arnold E. 1991; HIV reverse transcriptase structure–function relationships. Biochemistry 30:6351–6361
    [Google Scholar]
  19. Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D. Jr, Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P., Hizi A., Hughes S. H., Arnold E. 1993; Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proceedings of the National Academy of Sciences, USA 90:6320–6324
    [Google Scholar]
  20. Janin J. 1979; Surface and inside volumes in globular proteins. Nature 277:491–492
    [Google Scholar]
  21. Johnsson B., Lofas S., Lindquist G. 1991; Immobilization of proteins to a carboxymethyldextran modified gold surface for biospecific interaction analysis in surface plasmon resonance. Analytical Biochemistry 198:268–277
    [Google Scholar]
  22. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. 1992; Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790
    [Google Scholar]
  23. Kohlstaedt L. A., Wang J., Rice P. A., Friedman J. M., Steitz T. A. 1993; The structure of HIV-1 reverse transcriptase. In Reverse Transcriptase pp 223–249 Edited by Skalka A. M., Goff S. P. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Larder B. A. 1993; Inhibitors of HIV reverse transcriptase as antiviral agents and drug resistance. In Reverse Transcriptase pp 205–222 Edited by Skalka A. M., Goff S. P. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Larder B. A. 1994; Interactions between drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. Journal of General Virology 75:951–957
    [Google Scholar]
  26. Larder B. A., Kemp S. D. 1989; Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246:1155–1158
    [Google Scholar]
  27. Larder B. A., Purifoy D. J. M., Powell K. L., Darby G. 1987; Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature 327:716–717
    [Google Scholar]
  28. Li X., Amandoron E., Wainberg M. A., Parniak M. A. 1993; Generation and characterization of murine monoclonal antibodies reactive against N-terminal and other regions of HIV-1 reverse transcriptase. Journal of Medical Virology 39:251–259
    [Google Scholar]
  29. Majumdar C., Abbots J., Broader S., Wilson S. H. 1988; Studies on the mechanism of human immunodeficiency virus reverse transcriptase: steady-state kinetics, processivity, and polynucleotide inhibition. Journal of Biological Chemistry 263:15657–15665
    [Google Scholar]
  30. Mellors J. W., Larder B. A., Schinazi R. F. 1994; Mutations in HIV-1 reverse transcriptase and protease associated with drug resistance. In Human Retroviruses and AIDS DATABASE 94 pp III93–106 Edited by Myers G., Korber B., WainHobson S., Jeang K. T. Henderson L. E., Pavlakis G. N. Los Alamos, N. Mex.: Los Alamos National Laboratory;
    [Google Scholar]
  31. Mitsuya H., Yarchoan R., Broder S. 1990; Molecular targets for AIDS therapy. Science 249:1533–1544
    [Google Scholar]
  32. Örvell C., Unge T., Bhikhabhai R., Backbro K., Ruden U., Strandberg B., Wahren B., Fenyo E. M. 1991; Immunological characterization of the human immunodeficiency virus type 1 reverse transcriptase protein by the use of monoclonal antibodies. Journal of General Virology 72:1913–1918
    [Google Scholar]
  33. Reardon J. E. 1992; Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation. Biochemistry 31:4473–4479
    [Google Scholar]
  34. Reardon J. E., Furfine E. S., Cheng N. 1991; Human immunodeficiency virus reverse transcriptase: effect of primer length on template-primer binding. Journal of Biological Chemistry 266:14128–14134
    [Google Scholar]
  35. Ren J., Esnouf R., Garman E., Somers D., Ross C., Kirby I., Keeling J., Darby G., Jones Y., Stuart D., Stammers D. 1995; High resolution structure of HIV-1 RT from four RT–inhibitor complexes. Nature Structural Biology 2:293–302
    [Google Scholar]
  36. Restle T., Pawlita M., Sczakiel G., Müller B., Goody R. S. 1992; Structure–function relationships of HIV-1 reverse transcriptase determined using monoclonal antibodies: interaction with a possible deoxy-nucleoside triphosphate binding domain. Journal of Biological Chemistry 267:14654–14661
    [Google Scholar]
  37. Rodgers D. W., Gamblin S. J., Harris B. A., Ray S., Culp J. S., Hellmig B., Woolf D. J., Debouck C., Harrison S. C. 1995; The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 92:1222–1226
    [Google Scholar]
  38. Saitoh A., Iwasaki H., Nakata A., Adachi A., Shinagawa H. 1990; Overproduction of human immunodeficiency virus type I reverse transcriptase in Escherichia coli and purification of the enzyme. Microbiology and Immunology 34:509–521
    [Google Scholar]
  39. Smerdon S. J., Jager J., Wang J., Kohlstaedt L. A., Chirino A. J., Friedman J. M., Rice P. A., Steitz T. A. 1994; Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 91:3911–3915
    [Google Scholar]
  40. Stenberg E., Persson B., Roos H., Urbaniczky C. 1991; Quantitative determination of surface concentration of protein with surface plasmon resonance by using radiolabeled proteins. Journal of Colloid Interface Science 143:513–526
    [Google Scholar]
  41. Szilvay A. M., Nornes S., Haugan I. R., Olsen L., Prasad V. R., Endresen C., Goff S. P., Helland D. E. 1992; Epitope mapping of HIV-1 reverse transcriptase with monoclonal antibodies that inhibit polymerase and RNase H activities. Journal of Acquired Immune Deficiency Syndrome 5:647–657
    [Google Scholar]
  42. Thimmig R. L., McHenry C. S. 1993; Human immunodeficiency virus reverse transcriptase: expression in Escherichia coli, purification, and characterization of a functionally and structurally asymmetric dimeric polymerase. Journal of Biological Chemistry 268:16528–16536
    [Google Scholar]
  43. Tisdale M., Ertl P., Larder B. A., Purifoy D. J. M., Darby G., Powell K. L. 1988; Characterization of human immunodeficiency virus type 1 reverse transcriptase by using monoclonal antibodies: role of the C terminus in antibody reactivity and enzyme function. Journal of Virology 62:3662–3667
    [Google Scholar]
  44. Wu J., Amandoron E., Li X., Wainberg M. A., Parniak M. A. 1993; Monoclonal antibody-mediated inhibition of HIV-1 reverse transcriptase polymerase activity. Journal of Biological Chemistry 268:9980–9985
    [Google Scholar]
  45. Yamakawa Y., Chiba J. 1988; High performance liquid chromatography of mouse monoclonal antibodies on spherical hydroxyapatite beads. Journal of Liquid Chromatography 11:665–681
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-12-2921
Loading
/content/journal/jgv/10.1099/0022-1317-77-12-2921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error