1887

Abstract

The complete nucleotide sequence of RNA1 and RNA2 of olive latent virus 2 (OLV-2), a virus with quasi-spherical to bacilliform particles and a non-polyadenylated tripartite ssRNA genome, was determined. RNA1 consists of 3126 nucleotides and contains a single open reading frame (ORF) coding for a polypeptide with a molecular mass of 102689 Da (p1a). RNA2 is also a monocistronic molecule, 2734 nt in length, coding for a polypeptide with a molecular mass of 90631 Da (p2a). The translation products of RNA1 and RNA2 possess the motifs proper to helicase, methyltransferase (RNA1) and RNA polymerase (RNA2), suggesting that both are involved in the replication of the viral RNA. The similarities found between OLV-2 and members of the in some properties and in the sequences of all genomic products (including p1a and p2a) are strongly indicative that it belongs in this family. OLV-2, however, did not show a direct relationship with any of the current genera in the family. Rather, it revealed homologies in diverging directions with one or other of the genus, thus qualifying as the possible representative of a new taxon in this family.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-10-2637
1996-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/10/JV0770102637.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-10-2637&mimeType=html&fmt=ahah

References

  1. Agranovsky A. A., Dolja V. V., Atabekov J. G. 1982; Structure of the 3′ extremity of barley stripe mosaic virus RNA: evidence for internal poly(A) and a 3′-terminal tRNA-like structure. Virology 106:51–59
    [Google Scholar]
  2. Ahlquist P., Janda M. 1984; cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Molecular and Cellular Biology 4:2876–2882
    [Google Scholar]
  3. Ahlquist P., Luckow V., Kaesberg P. 1981; Complete nucleotide sequence of brome mosaic virus RNA3. Journal of Molecular Biology 153:23–28
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. Journal of Molecular Biology 215:403–410
    [Google Scholar]
  5. Anonymous 1994; Program Manual for the Wisconsin Package, version 8, September 1994. Genetics Computer Group, Madison, Wis USA:
    [Google Scholar]
  6. Argos P. 1988; A sequence motif in many polymerases. Nucleic Acids Research 16:9909–9916
    [Google Scholar]
  7. Felsenstein J. 1989; PHYLIP – phylogeny inference package (version 3.5). Cladistics 5:164–166
    [Google Scholar]
  8. Fichot O., Girard M. 1990; An improved method for sequencing of RNA templates. Nucleic Acids Research 18:6162
    [Google Scholar]
  9. Gallie D. R., Sleat D. E., Watts J. W., Turner P. C., Wilson T. M. A. 1987; A comparison of eucaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo . Nucleic Acids Research 15:8693–8711
    [Google Scholar]
  10. Gorbalenya A. E., Blonov V. M., Donchenko A. P., Koonin E. V. 1989; An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. Journal of Molecular Evolution 28:256–268
    [Google Scholar]
  11. Grieco F., Burgyan J., Russo M. 1989; Nucleotide sequence of the 3′-terminal region of cymbidium ringspot virus RNA. Journal of General Virology 70:2533–2538
    [Google Scholar]
  12. Grieco F., Martelli G. P., Savino V., Piazzolla P. 1992; Properties of olive latent virus 2. Rioista di Patologia Vegetale 2:125–136
    [Google Scholar]
  13. Grieco F., Martelli G. P., Savino V. 1995; The nucleotide sequence of RNA3 and RNA4 of olive virus 2. Journal of General Virology 76:929–937
    [Google Scholar]
  14. Hagenbuchle O., Santer M., Steitz J. A., Mans R. J. 1978; Conservation of the primary structure at the 3′ end of 18S rRNA from eucaryotic cells. Cell 13:551–563
    [Google Scholar]
  15. Hattori M., Sakaki Y. 1986; Dideoxy sequencing method using denatured plasmid templates. Analytical Biochemistry 152:232–238
    [Google Scholar]
  16. Houser-Scott F., Baer M. L., Liem K. F., Cai J., Gehrke L. 1994; Nucleotide sequence and stmctural determinants of specific binding of coat protein or coat protein peptides to the 3′ untranslated region of alfalfa mosaic virus RNA4. Journal of Virology 8:2194–2205
    [Google Scholar]
  17. Koonin E. V. 1991; The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. Journal of General Virology 72:2197–2206
    [Google Scholar]
  18. Koonin E. V., Dolja V. V. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequence. Critical Reviews in Biochemistry and Molecular Biology 28:375–430
    [Google Scholar]
  19. Koper-Zwarthoff E. C., Bol J. F. 1980; Nucleotide sequence of the putative recognition site for coat protein in the RNAs of alfalfa mosaic virus and tobacco streak virus. Nucleic Acids Research 8:3307–3318
    [Google Scholar]
  20. Langereis K., Mugnier M., Cornelissen B. J. C., Pinck L., Bol J. F. 1986; Variable repeats and poly(A)-stretches in the leader sequences of alfalfa mosaic virus RNA3. Virology 154:409–414
    [Google Scholar]
  21. Lutcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. 1987; Selection of AUG initiation codons differs in plant and animals. EMBO Journal 6:43–48
    [Google Scholar]
  22. Marck C. 1988; “DNA Strider”: a “C” programme for the fast analysis of DNA and protein sequences on the Apple Macintosh family computers. Nucleic Acids Research 16:1829–1836
    [Google Scholar]
  23. Mi S., Durbin R., Huang H. V., Rice C. M., Stollar V. 1989; Association of sindbis virus RNA methyltransferase activity with the non structural protein nsP1. Virology 170:52–62
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sanchez-Navarro J. A., Pallas V. 1994; Nucleotide sequence of apple mosaic ilarvirus RNA4. Journal of General Virology 75:1441–1445
    [Google Scholar]
  26. Savino V., Piazzolla P., Di Franco A., Martelli G. P. 1984; Olive latent virus 2, a newly recognized virus with different shaped particles. Proceedings of the 5th Congress of the Mediterranean Phytopathological Union, Cairo 1984 pp 24–26
    [Google Scholar]
  27. Scott S. W., Ge X. 1995; The nucleotide sequence of citrus leaf rugose virus RNA1. Journal of General Virology 76:3233–3238
    [Google Scholar]
  28. Sehnke P. C., Mason A. M., Hood S. J., Lister R. M., Johnson J. E. 1989; A ‘zinc-finger’-type binding domain in tobacco streak virus coat protein. Virology 168:48–56
    [Google Scholar]
  29. Symons R. H. 1985; Viral genome structure. In The Plant Viruses vol 1 Polyhedral Virions with Tripartite Genomes pp 57–81 Edited by Francki R. I. B. New York & London: Plenum Press;
    [Google Scholar]
  30. Ziegler A., Mayo M. A., Murant A. F. 1993; Proposed classification of the bipartite-genomed raspberry bushy dwarf idaeovirus with tripartite-genomed viruses in the family Bromoviridae . Archives of Virology 131:483–488
    [Google Scholar]
  31. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 244:48–52
    [Google Scholar]
  32. Zuidema D., Jaspars E. M. J. 1984; Comparative investigations on the coat protein binding sites of the genomic RNAs of alfalfa mosaic and tobacco streak vimses. Virology 135:43–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-10-2637
Loading
/content/journal/jgv/10.1099/0022-1317-77-10-2637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error