1887

Abstract

A viroid was isolated from plants using the bidirectional PAGE method for analysis of small circular RNA molecules. The viroid was transmitted to viroid-free plants of the cultivar ‘Aureoreticulata’ by mechanical inoculation. Infected plants did not develop any symptoms. The new viroid species has been named viroid (IrVd). It is a member of the potato spindle tuber viroid group and consists of 370 nucleotides, 227 G+C, 143 A+U (GC content, 61.4%). The most stable rod-like secondary structure of this viroid has 86 G:C, 34 A:U and 12 G:U base pairs with a minimum free energy of -153.4 kcal/mol (-641.2 kJ/mol). The sequence and the position of the terminal conserved region (TCR) within the rod-like secondary structure of IrVd differ from the other known TCRs. The structure of the left terminal domain of IrVd may reflect the result of an intramolecular RNA recombination event.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-10-2631
1996-10-01
2024-07-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/10/JV0770102631.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-10-2631&mimeType=html&fmt=ahah

References

  1. Daros J. A., Flores R. H. 1995; Characterization of multiple circular RNAs derived from a plant viroid-like RNA by sequence deletions and duplications. RNA 1:734–744
    [Google Scholar]
  2. Diener T. O. 1991; The frontier of life: the viroid and viroid-like satellites RNAs. italic>In Viroids and Satellites: Molecular Parasites at the Frontier of Life pp 1–20 Edited by Maramorosch K. Boca Raton: CRC Press;
    [Google Scholar]
  3. Gross H. J., Domdey H., Lossow C., Jank P., Raba M., Alberty H., Sanger H. L. 1978; Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature 273:203–208
    [Google Scholar]
  4. Gross H. J., Krupp G., Domdey H., Raba M., Alberty H., Lossow C. H., Ramm K., Sänger H. L. 1982; Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid. European Journal of Biochemistry 121:249–257
    [Google Scholar]
  5. Hammond R., Smith D. R., Diener T. O. 1989; Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences. Nucleic Acids Research 23:10083–10094
    [Google Scholar]
  6. Haseloff J., Mohammed N. A., Symons R. H. 1982; Viroid RNAs of cadang-cadang disease of coconuts. Nature 299:316–321
    [Google Scholar]
  7. Keese P., Symons R. H. 1985; Domains in viroids: evidence of intermolecular rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences, USA 82:4582–4586
    [Google Scholar]
  8. Kiefer M. C., Owens R. A., Diener T. O. 1983; Structural similarities between viroids and transposable genetic elements. Biochemistry 80:6234–6238
    [Google Scholar]
  9. Koltunow A. M., Rezaian M. A. 1989; A scheme of viroid classification. Intervirology 30:194–201
    [Google Scholar]
  10. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  11. Rezaian A. M. 1990; Australian grapevine viroid - evidence for extensive recombination between viroids. Nucleic Acids Research 18:1813–1818
    [Google Scholar]
  12. Riesner D. 1991; Viroids: from thermodynamics to cellular structure and function. Molecular Plant–Microbe Interactions 4:122–131
    [Google Scholar]
  13. Riesner D., Henco K., Rokohol U., Klotz G., Kleinschmidt A. K., Domdey H., Jank P., Gross H. J., Sanger H. L. 1979; Structure and structure formation of viroids. Journal of Molecular Biology 133:85–115
    [Google Scholar]
  14. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  16. Sänger H. L., Klotz G., Riesner D., Gross H. J., Kleinschmidt A. K. 1976; Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences, USA 73:3852–3856
    [Google Scholar]
  17. Schnoözer M., Haas B., Ramm K., Hofmann H., Sanger H. L. 1985; Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). EMBO Journal 4:2181–2190
    [Google Scholar]
  18. Schumacher J., Randles J. W., Riesner D. 1983; A two-dimensional electrophoresis technique for the detection of circular viroids and virusoids. Analytical Biochemistry 135:288–295
    [Google Scholar]
  19. Semancik J. S., Szychowski J. A., Rakowski A. G., Symons R. H. 1993; Isolates of citrus exocortis viroid recovered by host and tissue selection. Journal of General Virology 74:2427–2436
    [Google Scholar]
  20. Singh R. P., Lakshman D. K., Boucher A., Tavantzis S. M. 1992; A viroid from Nematanthus wettsteinii plants closely related to the Columnea latent viroid. Journal of General Virology 73:2769–2774
    [Google Scholar]
  21. Spieker R. L. 1991; A new class of viroids in Coleus blumei: sequencing, cloning, structure/function-analysis by site-directed mutagenesis and expression in Nicotiana tabacum . Karlsruhe Contributions to Plant Physiology 22:1–226
    [Google Scholar]
  22. Spieker R. L., Haas B., Charng Y. C., Freimiiller K., Sänger H. L. 1990; Primary and secondary structure of a new viroid ‘species’ (CbVd 1) present in the Coleus blumei cultivar ‘Bienvenue’ . Nucleic Acids Research 18:3998
    [Google Scholar]
  23. Spieker R. L., Marinkovic S., Sänger H. L. 1996; A viroid from Solanum pseudocapsicum closely related to the tomato apical stunt viroid. Archives of Virology (in press)
    [Google Scholar]
  24. Wassenegger M., Heimes S., Sanger H. L. 1994; An infectious viroid RNA replicon evolved from an in vitro-generated non-infectious viroid deletion mutant via a complementary deletion in vivo . EMBO Journal 13:6172–6177
    [Google Scholar]
  25. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 24448–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-10-2631
Loading
/content/journal/jgv/10.1099/0022-1317-77-10-2631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error