1887

Abstract

The amino acid sequence YPHFMPTNL of pp89, the -encoded product of murine cytomegalovirus (MCMV; Smith strain), constitutes an immunodominant T cell epitope recognized in association with H-2L. Nucleotide sequencing of MCMV isolates derived from wild mice identified variation between amino acids 147–192 of pp89 in 19 of 27 isolates, including the region encompassing the CTL epitope (amino acid residues 168–176). Four groups of isolates with naturally occurring variant sequences for the CTL epitope were defined: (1) YPHFMPNL; (2) YPHFMPL; (3) YPHFPL; and (4) YFMPNL. The remaining isolates, and the laboratory strains K181 and Vancouver, showed complete identity with the Smith strain. Polyclonal pp89 (Smith strain)-specific CTL only weakly recognized target cells infected with MCMV from most variant groups. No lysis of cells infected with isolate N1 from group 4 was detected. Analyses of cross-reactive recognition of YPHFMPTNL peptide-coated targets by CTL primed with variant MCMV isolates showed that the group 2 and 3 isolates, G4 and K6, respectively, but not the group 4 isolate N1, elicited CTL that exhibited a cross-reactive response. Furthermore, while the group 2 and 3 isolates G4 and K6 were able to prime CTL responses that displayed reactivity to homologous pp89 variant nonapeptides, the group 4 isolate N1 failed to do so. Finally, while immunization of mice with the nonapeptide YPHFMPTNL conferred significant protection against the laboratory strain KI81, no evidence of protection was observed for the group 2 and 4 variants G4 and N1, respectively. These observations raise the possibility that clinical isolates of HCMV may also differ in sequence from potential vaccine strains at immunodominant epitopes for CD8 T cells thus reducing the efficacy of vaccination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-10-2615
1996-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/10/JV0770102615.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-10-2615&mimeType=html&fmt=ahah

References

  1. Allan J. E., Shellam G. R. 1984; Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice. Archives of Virology 81:139–150
    [Google Scholar]
  2. Apolloni A., Moss D., Stumm R., Burrows S., Misko I., Schmidt C., Sculley T. 1992; Sequence variation of cytotoxic T cell epitopes in different isolates of Epstein–Barr virus. European Journal of Immunology 22:183–189
    [Google Scholar]
  3. Bertoletti A., Sette A., Chisari F. V., Penna A., Levrero M., de Carli M., Fiaccadori F., Ferrari C. 1994; Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 369:407–410
    [Google Scholar]
  4. Booth T. W. M., Scalzo A. A., Carrello C., Lyons P. A., Farrell H. E., Singleton G. R., Shellam G. R. 1993; Molecular and biological characterisation of new strains of murine cytomegalovirus isolated from wild mice. Archives of Virology 132:209–220
    [Google Scholar]
  5. Chalmer J. E., Mackenzie J. S., Stanley N. F. 1977; Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. Journal of General Virology 37:107–114
    [Google Scholar]
  6. Corr M., Boyd L. F., Frankel S. R., Kozlowski S., Padlan E. A., Margulies D. H. 1992; Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex. Journal of Experimental Medicine 176:1681–1692
    [Google Scholar]
  7. de Campos-Lima P. O., Levitsky V., Brooks J., Lee S. P., Hu L. F., Rickinson A. B., Masucci M. G. 1994; T cell responses and virus evolution: loss of HLA All-restricted CTL epitopes in Epstein–Ban-virus isolates from highly Al 1-positive populations by selective mutation of anchor residues. Journal of Experimental Medicine 179:1297–1305
    [Google Scholar]
  8. Del Val M., Volkmer H., Rothbard J. B., Jonjic S., Messerle M., Schickedanz J., Reddehase M. J., Koszinowski U. H. 1988; Molecular basis for cytolytic T-lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89. Journal of Virology 62:3965–3972
    [Google Scholar]
  9. Del Val M., Schlict H. J., Ruppert T., Reddehase M. J., Koszinowski U. H. 1991a; Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66:1145–1153
    [Google Scholar]
  10. Del Val M., Schlicht H. J., Volkmer H., Messerle M., Reddehase M. J., Koszinowski U. H. 1991b; Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. Journal of Virology 65:3641–3646
    [Google Scholar]
  11. Drew W. L., Sweet E. S., Miner R. C., Mocarski E. S. 1984; Multiple infections by cytomegalovirus in patients with acquired immunodeficiency syndrome: documentation by Southern blot hybridization. Journal of Infectious Diseases 150:952–953
    [Google Scholar]
  12. Dutz J. P., Walden P. R., Eisen H. N. 1992; Effects of cognate peptides on cytolytic and proliferative activities of cloned cytotoxic T lymphocytes. International Immunology 4:571–580
    [Google Scholar]
  13. Ho M. 1980; Role of specific cytotoxic lymphocytes in cellular immunity against murine cytomegalovirus. Infection and Immunity 27:767–776
    [Google Scholar]
  14. Ho M. 1991; Cytomegalovirus: Biology and Infection. New York: Plenum Medical Book Company;
    [Google Scholar]
  15. Hodgkin P. A., Scalzo A. A., Swaminathan N., Price P., Shellam G. R. 1988; Murine cytomegalovirus binds reversibly to mouse embryo fibroblasts: implications for quantitation and explanation of centrifugal enhancement. Journal of Virological Methods 22:215–230
    [Google Scholar]
  16. Hudson J. B. 1979; The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. Archives of Virology 62:1–29
    [Google Scholar]
  17. Jameson S. C., Bevan M. J. 1995; T cell receptor antagonists and partial agonists. Immunity 2:1–11
    [Google Scholar]
  18. Jonjic S., Del Val M., Keil G. M., Reddehase M. J., Koszinowski U. H. 1988; A nonstructural viral protein expressed by a recombinant vaccinia virus protects against lethal cytomegalovirus infection. Journal of Virology 62:1653–1658
    [Google Scholar]
  19. Jonjic S., Pavic I., Polic B., Crnkovic I., Lucin P., Koszinowski U. H. 1994; Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. Journal of Experimental Medicine 179:1713–1717
    [Google Scholar]
  20. Kageyama S., Tsomides T. J., Sykulev Y., Eisen H. N. 1995; Variations in the number of peptide–MHC class I complexes required to activate cytotoxic T cell responses. Journal of Immunology 154:567–576
    [Google Scholar]
  21. Keil G. M., Ebeling-Keil A., Koszinowski U. H. 1987; Sequence and structural organization of murine cytomegalovirus immediate-early gene. Journal of Virology 61:1901–1908
    [Google Scholar]
  22. Klenerman P., Rowland-Jones S., McAdam S., Edwards J., Daenke S., Lalloo D., Koppe B., Rosenberg W., Boyd D., Edwards A., Giangrande P., Phillips R. E., McMichael A. J. 1994; Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 369:403–407
    [Google Scholar]
  23. Koszinowski U. H., Keil G. M., Schwarz H., Schickedanz J., Reddehase M. J. 1987; A nonstructural polypeptide encoded by immediate-early transcription unit 1 of murine cytomegalovirus is recognized by cytolytic T lymphocytes. Journal of Experimental Medicine 166:289–294
    [Google Scholar]
  24. Koszinowski U. H., Del Val M., Reddehase M. J. 1990; Cellular and molecular basis of the protective immune response to cytomegalovirus infection. Current Topics in Microbiology and Immunology 154:189–220
    [Google Scholar]
  25. Koszinowski U. H., Reddehase M. J., Del Val M. 1992; Principles of cytomegalovirus antigen presentation in vitro and in vivo. Seminars in Immunology 4:71–79
    [Google Scholar]
  26. Lewicki H., Tishon A., Borrow P., Evans C. F., Gairin J. E., Hahn K. M., Jewell D. A., Wilson I. A., Oldstone M. B. A. 1995a; CTL escape viral variants. In Generation and molecular characterization. Virology 210:29–40
    [Google Scholar]
  27. Lewicki H. A., Von Herrath M. G., Evans C. F., Whitton J. L., Oldstone M. B. A. 1995b; CTL escape viral variants. II. Biologic activity in vivo. Virology 211:443–450
    [Google Scholar]
  28. Mocarski E., Post L. E., Roizman B. 1980; Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22:243–255
    [Google Scholar]
  29. Moskophidis D., Zinkernagel R. M. 1995; Immunobiology of cytotoxic T-cell escape mutants of lymphocytic chroriomeningitis virus. Journal of Virology 69:2187–2193
    [Google Scholar]
  30. Phillips R. E., Rowland-Jones S., Nixon D. F., Gotch F. M., Edwards J. P., Ogunlesi A. O., Elvin J. G., Rothbard J. A., Bangham C. R. M., Rizza C. R., McMichael A. J. 1991; Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354:453–459
    [Google Scholar]
  31. Pircher H., Moskophidis D., Rohrer U., Biirki K., Hengartner H., Zinkernagel R. M. 1990; Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346:629–633
    [Google Scholar]
  32. Reddehase M. J., Koszinowski U. H. 1984; Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371
    [Google Scholar]
  33. Reddehase M. J., Koszinowski U. H. 1991; Redistribution of critical major histocompatibility complex and T cell receptor-binding functions of residues in an antigenic sequence after biterminal substitution. European Journal of Immunology 21:1697–1701
    [Google Scholar]
  34. Reddehase M. J., Weiland F., Munch K., Jonjic S., Liiske A., Koszinowski U. H. 1985; Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. Journal of Virology 55:264–273
    [Google Scholar]
  35. Reddehase M. J., Rothbard J. B., Koszinowski U. H. 1989; A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653
    [Google Scholar]
  36. Scalzo A. A., Elliott S. L., Cox J., Gardner J., Moss D. J., Suhrbier A. 1995a; Induction of protective cytotoxic T cells to murine cytomegalovirus by using a nonapeptide and a human-compatible adjuvant (Montanide ISA 720).. Journal of Virology 69:1306–1309
    [Google Scholar]
  37. Scalzo A. A., Forbes C. A., Davis-Poynter N. J., Farrell H. E., Lyons P. A. 1995b; DNA sequence and transcriptional analysis of the glycoprotein M (gM) gene of murine cytomegalovirus. Journal of General Virology 76:2895–2901
    [Google Scholar]
  38. Staczek J. 1990; Animal cytomegaloviruses. Microbiological Reviews 54:247–265
    [Google Scholar]
  39. Thomson S. A., Khanna R., Gardner J., Burrows S. R., Coupar B., Moss D. J., Suhrbier A. 1995; Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design. Proceedings of the National Academy of Sciences, USA 92:5845–5849
    [Google Scholar]
  40. Volkmer H., Berthotet C., Jonjic S., Wittek R., Koszinowski U. H. 1987; Cytolytic T lymphocyte recognition of the murine cytomegalovirus nonstructural immediate-early protein pp89 expressed by recombinant vaccinia virus. Journal of Experimental Medicine 166:668–677
    [Google Scholar]
  41. Xu J., Lyons P. A., Carter M. D., Booth T. W. M., Davis-Poynter N. J., Shellam G. R., Scalzo A. A. 1996; Assessment of antigenicity and genetic variation of glycoprotein B (gB) of murine cytomegalovirus. Journal of General Virology 77:49–59
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-10-2615
Loading
/content/journal/jgv/10.1099/0022-1317-77-10-2615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error