1887

Abstract

The influence of host genotype on the relative importance of T cell subsets and natural killer (NK) cells in controlling murine cytomegalovirus (MCMV) replication has been investigated. Genetically susceptible BALB/c and A/J, moderately resistant C57BL/10, and resistant CBA/CaH mouse strains were treated with monoclonal antibodies (MAb) to the CD4 and CD8 markers and the extent of MCMV replication in major target tissues was determined. Both mouse strain-specific and tissue-specific effects were observed. CBA/CaH and C57BL/10 mice were found not to require CD4 or CD8 T cells for control of MCMV replication in the spleen or liver. In contrast, in A/J mice, as well as BALB/c mice, the CD8 T cell population was primarily responsible for the clearance of virus from these tissues. However, in all strains of mice, CD4 T cells were required for delayed type hypersensitivity and antibody responses, and for virus clearance in the salivary glands. The dependence of mice with the BALB genetic background on CD8 T cells for limitation of acute MCMV infection was found to be negated in the BALB.B6- congenic strain, in which an effective NK cell response has been generated through the introduction of the resistant allele from C57BL/6 mice. Depletion of NK cells in the BALB.B6- strain using anti-NK1.1 MAb restored the role of CD8 T cells in mediating viral clearance. These analyses demonstrate that some, but not all, strains of mice use CD8 T cells to controlMCMV replication and that even when CD8 T cell-dependence exists, this can be circumvented by an appropriate NK cell response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-10-2605
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/10/JV0770102605.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-10-2605&mimeType=html&fmt=ahah

References

  1. Allan J. E., Shellam G. R. 1984; Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice. Archives of Virology 81:139–150
    [Google Scholar]
  2. Allan J. E., Shellam G. R. 1985; Characterization of interferon induction in mice of resistant and susceptible strains during murine cytomegalovirus infection. journal of General Virology 66:1105–1112
    [Google Scholar]
  3. Anegon I., Cuturi M. C., Trinchieri G., Perussia B. 1988; Interaction of Fcg receptor (CD 16) with ligands induces transcription of IL-2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. Journal of Experimental Medicine 167:452–472
    [Google Scholar]
  4. Bancroft G. J., Shellam G. R., Chalmer J. E. 1981; Genetic influence on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. journal of Immunology 126:988–994
    [Google Scholar]
  5. Biron C. A. 1994; Cytokines in the generation of immune responses to, and resolution of, virus infection. Current Opinion in Immunology 6:530–538
    [Google Scholar]
  6. Bowden R. A., Day L. M., Amos D. E., Meyers J. D. 1987; Natural cytotoxic activity against cytomegalovirus-infected target cells following marrow transplantation. Transplantation 44:504–508
    [Google Scholar]
  7. Brownstein D. G. P., Bhatt P. N., Gras L., Jacoby R. O. 1991; Chromosomal locations and gonadal dependence of genes that mediate resistance to ectromelia (mousepox) virus-induced mortality. journal of Virology 65:1946–1951
    [Google Scholar]
  8. Bukowski J. F., Woda B. A., Welsh R. M. 1984; Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. journal of Virology 52:119–128
    [Google Scholar]
  9. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. 1983; Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo . Journal of Immunology 131:1531–1537
    [Google Scholar]
  10. Ceredig R., Lowenthal J. W., Nabholz M., MacDonald H. R. 1985; Expression of interleukin-2 receptors as a differentiation marker on intrathymic stem cells. Nature 314:98–100
    [Google Scholar]
  11. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. 1984; Therapy with monoclonal antibodies by elimination of T cell subsets in vivo. Nature 312:548–550
    [Google Scholar]
  12. Cuturi M. C., Anegon I., Sherman F., Loudon R., Clark S. C., Perussia B., Trinchieri G. 1989; Production of hematopoietic colony-stimulating factors by human natural killer cells. journal of Experimental Medicine 169:569–583
    [Google Scholar]
  13. Delano M. L., Brownstein D. G. 1995; Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. journal of Virology 69:5875–5877
    [Google Scholar]
  14. Del Val M., Volkmer H., Rothbard J. B., Jonjic S., Messerle M., Schickedanz J., Reddehase M. J., Koszinowski U. H. 1988; Molecular basis for cytolytic T lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89. journal of Virology 62:3965–3972
    [Google Scholar]
  15. Erlich K. S., Mills J., Shanley J. D. 1989; Effects of L3T4+ lymphocyte depletion on acute murine cytomegalovirus infection. Journal of General Virology 70:1765–1771
    [Google Scholar]
  16. Grundy (Chalmer) J. E., Mackenzie J. S., Stanley N. F. 1981; Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infection and Immunity 32:277–286
    [Google Scholar]
  17. Grundy J. E., Melief C. J. M. 1982; Effect of Nu/Nu gene on genetically determined resistance to murine cytomegalovirus. journal of General Virology 61:133–136
    [Google Scholar]
  18. Grundy(Chalmer) J. E., Trapman J., Allan J. E., Shellam G. R., Melief C. J. M. 1982; Evidence for a protective role of interferon in resistance to murine cytomegalovirus infection and its control by non-H-2 linked genes. Infection and Immunity 37:143–150
    [Google Scholar]
  19. Jonjic S., Mutter W., Weiland F., Reddehase M. J., Koszinowski U. H. 1989; Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4-L T lymphocytes. Journal of Experimental Medicine 169:1199–1212
    [Google Scholar]
  20. Jonjic S., Pavic I., Lucin P., Rukavina D., Koszinowski U. H. 1990; Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. Journal of Virology 64:5457–5464
    [Google Scholar]
  21. Koo G. C., Peppard J. R. 1984; Establishment of monoclonal anti-NK11 antibody. Hyhridoma 3:301–303
    [Google Scholar]
  22. Laskay T., Diefenbach A., Rollinghoff M., Solbach W. 1995; Early parasite containment is decisive for resistance to Leishmania major infection. European journal of Immunology 25:2220–2227
    [Google Scholar]
  23. Lawson C. M., Grundy J. E., Shellam G. R. 1987; Delayed-type hypersensitivity responses to murine cytomegalovirus in genetically resistant and susceptible strains of mice. Journal of General Virology 68:2379–2388
    [Google Scholar]
  24. Lawson C. M., Grundy J. E., Shellam G. R. 1988; Antibody responses to murine cytomegalovirus in genetically resistant and susceptible strains of mice. journal of General Virology 69:1987–1998
    [Google Scholar]
  25. Lawson C. M., Hodgkin P. D., Shellam G. R. 1989; The effect of cyclosporin on major histocompatibility complex-linked resistance to murine cytomegalovirus. journal of General Virology 70:1253–1259
    [Google Scholar]
  26. Lucin P., Pavic I., Polic B., Jonjic S., Koszinowski U. H. 1992; Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. Journal of Virology 66:1977–1984
    [Google Scholar]
  27. MacDonald H. R. 1995; NK1.1+ T cell receptor-x//T cells: new clues to their origin, specificity, and function. Journal of Experimental Medicine 182:633–638
    [Google Scholar]
  28. Malo D., Skamene E. 1994; Genetic control of host resistance to infection. Trends in Genetics 10:365–371
    [Google Scholar]
  29. Orange J. S., Wang B., Terhorst C., Biron C. A. 1995; Requirement for natural killer cell-produced interferon-): in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. journal of Experimental Medicine 182:1045–1056
    [Google Scholar]
  30. Pavic I., Polic B., Crnkovic I., Lucin P., Jonjic S., Koszinowski U. H. 1993; Participation of endogenous tumour necrosis factor in host resistance to murine cytomegalovirus infection. journal of General Virology 74:2215–2223
    [Google Scholar]
  31. Polic B., Jonjic S., Pavic I., Crnkovic I., Zorica I., Hengel H., Lucin P., Koszinowski U. H. 1996; Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection. in vivo Journal of General Virology 77:217–225
    [Google Scholar]
  32. Price P., Winter J. G., Nikoletti S., Hudson J. B., Shellam G. R. 1987; Functional changes in murine macrophages infected with cytomegalovirus relate to H-2-determined sensitivity to infection. journal of Virology 61:3602–3606
    [Google Scholar]
  33. Price P., Gibbons A. E., Shellam G. R. 1990; H-2 Class I loci determine sensitivity to murine cytomegalovirus in macrophages and fibroblasts. Immunogenetics 32:20–26
    [Google Scholar]
  34. Quinnan G. V., Kirmani N., Rook A. H., Manischewitz J. F., Jackson L., Moreschi G., Santos G. W., Saral R., Burns W. H. 1982; Cytotoxic T cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. New England Journal of Medicine 307:7–13
    [Google Scholar]
  35. Reddehase M. J., Weiland F., Munch K., Jonjic S., Luske K., Koszinowski U. H. 1985; Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of the cells that limit viral replication during established infection of the lungs. Journal of Virology 55:264–273
    [Google Scholar]
  36. Reddehase M. J., Mutter W., Munch K., Buhring H. J., Koszinowski U. H. 1987; CD8-positive lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. Journal of Virology 61:3102–3108
    [Google Scholar]
  37. Sarmiento M., Glasebrook A. L., Fitch F. W. 1985; IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt2 antigen block T cell-mediated cytolysis in the absence of complement. Journal of Immunology 125:2665–2672
    [Google Scholar]
  38. Scalzo A. A., Fitzgerald N. A., Simmons A., La Vista A. B., Shellam G. R. 1990; Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. Journal of Experimental Medicine 171:1469–1483
    [Google Scholar]
  39. Scalzo A. A., Fitzgerald N. A., Wallace C. R., Gibbons A. E., Smart Y. C., Burton R. C., Shellam G. R. 1992; The effect of the Cmv 1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. Journal of Immunology 149:581–589
    [Google Scholar]
  40. Scalzo A. A., Lyons P. A., Fitzgerald N. A., Forbes C. A., Shellam G. R. 1995a; The BALB,. B6-Cmulr mouse: a strain congenic for Cmv 1 and the NK gene complex. Immunogenetics 41:148–151
    [Google Scholar]
  41. Scalzo A. A., Lyons P. A., Fitzgerald N. A., Forbes C. A., Yokoyama W. M., Shellam G. R. 1995b; Genetic mapping of Cmv 1 in the region of mouse chromosome 6 encoding the NK gene complex-associated loci Ly49 and musNKR-P 1. Genomics 27:435–441
    [Google Scholar]
  42. Shanley J. D. 1990; In vivo administration of monoclonal antibody to the NK1.1 antigen of natural killer cells: effect on acute murine cytomegalovirus infection. Journal of Medical Virology 30:58–60
    [Google Scholar]
  43. Shellam G. R., Allan J. E., Papadimitriou J. M., Bancroft G. J. 1981; Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proceedings of the National Academy of Sciences, USA 78:5104–5108
    [Google Scholar]
  44. Shellam G. R., Flexman J. P., Farrell H. E., Papadimitriou J. M. 1985; The genetic background modulates the effect of the beige gene on susceptibility to cytomegalovirus infection in mice. Scandinavian Journal of Immunology 22:147–155
    [Google Scholar]
  45. Venema H., Van Den Berg A. P., Van Zanten C., Van Son W. J., Van Der Gissen M., The T. H. 1994; Natural killer cell responses in renal transplant patients with cytomegalovirus infection. Journal of Medical Virology 42:188–192
    [Google Scholar]
  46. Welsh R. M., Dundon P. L., Eynon E. E., Brubaker J. O., Koo G. C., O’Donnell C. L. 1990; Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK1.1). Natural Immunity and Cell Growth Regulation 9:112–120
    [Google Scholar]
  47. Yokoyama W. M. 1995; Natural killer cell receptors. Current Opinion in Immunology 7:110–120
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-10-2605
Loading
/content/journal/jgv/10.1099/0022-1317-77-10-2605
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error