1887

Abstract

After immunization with measles virus (MV) several monoclonal antibodies (MAbs) were obtained, which reacted with peptides corresponding to the amino acids 361–410 of the haemagglutinin protein (MV-H). Three of these MAbs (BH6, BH21 and BH216) inhibited haemagglutination, neutralized MV and protected animals from a lethal challenge of rodent-adapted neurotropic MV. These MAbs reacted with the 15-mer peptides H381 and H386 defining their overlapping region 386–395 as a sequential neutralizing and protective epitope, which can be imitated by a short peptide. H381 and H386 share two Cys residues (CKGKIQALCENPEWA) and for optimal MAb binding of peptide (or MV) disulphide bonds were required in addition to a linear C-terminal extension. Other MAbs bound to peptides C- (BH147, BH195) and N-terminally (BH168, BH171) adjacent to the loop but did not neutralize or protect. When sera from measles patients or from women of child-bearing age were tested with the peptides corresponding to this haemagglutinating and neutralizing epitope (HNE), none of the sera recognized the 15-mer peptides of this region, while some reactivity was found to 30-mers homologous to different wild-type mutants. Its lack of recognition by maternal antibodies and its high degree of conservation would make the HNE loop an attractive candidate to include into a subunit vaccine, which could be administered during early childhood, independent of immune status.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-10-2479
1996-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/10/JV0770102479.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-10-2479&mimeType=html&fmt=ahah

References

  1. Ahlers J. D., Pendleton C. D., Dunlop N., Minassian A., Nara P. L., Berzofsky J. A. 1993; Construction of an HIV-1 peptide vaccine containing a multideterminant helper peptide linked to a V3 loop peptide 18 inducing strong neutralizing antibody responses in mice of multiple MHC haplotypes after two immunizations. Journal of Immunology 150:5647–5665
    [Google Scholar]
  2. Albrecht P., Ennis A., Soltzman E. J., Krugman S. 1977; Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. Journal of Pediatrics 91:715–718
    [Google Scholar]
  3. Alkhatib G., Briedis D. J. 1986; The predicted primary structure of the measles virus hemagglutinin. Virology 150:479–490
    [Google Scholar]
  4. Beauverger P., Buckland R., Wild F. 1993; Establishment and characterisation of murine cells constitutively expressing the fusion, nucleoprotein and matrix proteins of measles virus. Journal of Virological Methods 44:199–210
    [Google Scholar]
  5. Beauverger P., Buckland R., Wild T. F. 1994; Measles virus antigens induce both type-specific and canine distemper virus crossreactive cytotoxic T lymphocytes in mice: localization of a common Ld- restricted nucleoprotein epitope. Journal of General Virology 74:2357–2363
    [Google Scholar]
  6. Burnstein T., Jacobsen L., Zeman W., Chen T. T. 1974; Persistent infection of BSC-1 cells by defective measles virus derived from subacute sclerosing panencephalitis. Infection and Immunity 10:1378–1382
    [Google Scholar]
  7. Carter M. J., Willcocks M. M., Loftier S., ter Meulen V. 1982; Relationships between monoclonal antibody-binding sites on the measles virus haemagglutinin. Journal of General Virology 63:113–120
    [Google Scholar]
  8. Cattaneo R., Schmid A., Spielhofer P., Kaelin K., Baczko K., ter Meulen V., Pardowitz J., Flanagan S., Rima B. K., Udem S. A., Billiter M. A. 1989; Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology 173:415–425
    [Google Scholar]
  9. Curran M. D., Clarke D. K., Rima B. K. 1991; The nucleotide sequence of the gene encoding the attachment protein H of canine distemper virus. Journal of General Virology 72:443–447
    [Google Scholar]
  10. Emini E. A., Jameson B. A., Wimmer E. 1983; Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature 304:699–703
    [Google Scholar]
  11. Fournier P., Ammerlaan W., Ziegler D., Giminez C., Rabourdin-Combe C., Fleckenstein B., Wiesmueller K.-H., Jung G., Schneider F., Muller C. P. 1996; Differential activation of T cells by antibody- mediated processing of the flanking sequences of class II-restricted peptides. International Immunology (in press)
    [Google Scholar]
  12. Francis M. J., Hastings G. Z., Brown F., McDermed J., Lu Y. A., Tam J. P. 1991; Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot-and- mouth disease virus. Immunology 73:249–254
    [Google Scholar]
  13. Fultz P. N., Nara P., Barre-Sinoussi F., Chaput A., Greenberg M. L., Muchmore E., Kieny M. P., Girard M. 1992; Vaccine protection of chimpanzees against challenge with HIV-1-infected peripheral blood mononuclear cells. Science 256:1687–1690
    [Google Scholar]
  14. Gerald C., Buckland R., Barker R., Freeman G., Wild T. F. 1986; Measles virus haemagglutinin gene: cloning, complete nucleotide sequence analysis and expression in COS cells. Journal of General Virology 67:2695–2703
    [Google Scholar]
  15. Gerlier D., Gamier F., Forquet F. 1988; Haemagglutinin of measles virus: purification and storage with preservation of biological and immunological properties. Journal of General Virology 69:2061–2069
    [Google Scholar]
  16. Giraudon P., Wild T. F. 1985; Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144:46–58
    [Google Scholar]
  17. Goudsmit J., Debouck C., Meloen R. H., Smit L., Bakker M., Asher D. M., Wolff A. V., Gibbs C. J. Jr, Gajdusek D. C. 1988; Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proceedings of the National Academy of Sciences, USA 85:4478–4482
    [Google Scholar]
  18. Goudsmit J., Back N. K., Nara P. L. 1991; Genomic diversity and antigenic variation of HIV-1: links between pathogenesis, epidemiology and vaccine development. FASEB Journal 5:2427–2436
    [Google Scholar]
  19. Hu A., Norrby E. 1994; Role of individual cysteine residues in the processing and antigenicity of the measles virus haemagglutinin protein. Journal of General Virology 75:2173–2181
    [Google Scholar]
  20. Hu A., Sheshberadaran H., Norrby E., Kovamees J. 1993; Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 192:351–354
    [Google Scholar]
  21. Hummel K. B., Vanchiere J. A., Bellini W. J. 1994; Restriction of fusion protein mRNA as a mechanism of measles virus persistence. Virology 202:665–672
    [Google Scholar]
  22. Ishizaka S. T., Piacente P., Silva J., Mishkin E. M. 1995; IgG subtype is correlated with efficiency of passive protection and effector function of anti-herpes virus glycoprotein D monoclonal antibodies. Journal of Infectious Diseases 172:1108–1111
    [Google Scholar]
  23. Janeway C. A. 1949; Use of concentrated human serum gamma globulin in the prevention and attenuation of measles. Bulletin of the New York Academy of Medicine 21:202–222
    [Google Scholar]
  24. Javaherian K., Langlois A. J., McDanal C., Ross K. L., Eckler L. I., Jellis G. L., Profy A. T., Rusche J. R., Bolognesi D. P., Putney S. D., Matthews T. J. 1989; Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proceedings of the National Academy of Sciences, USA 86:6768–6772
    [Google Scholar]
  25. Komase K., Haga T., Yoshikawa Y., Sato T. A., Yamanouchi K. 1990; Molecular analysis of structural protein genes of the Yamagata- 1 strain of defective subacute sclerosing panencephalitis virus. HI. Nucleotide sequence of the hemagglutinin gene. Virus Genes 4:163–172
    [Google Scholar]
  26. Lee M. S., King C. C., Jean J. Y., Kao C. L., Wang C. C., Ho M. S., Chen C. J., Lee G. C. 1992; Seroepidemiology and evaluation of passive surveillance during 1988-1989 measles outbreak in Taiwan. International Joumal of Epidemiology 21:1165–1174
    [Google Scholar]
  27. Lee M. S., King C. C., Chen C. J., Yang S. Y., Ho M. S. 1995; Epidemiology of measles in Taiwan: dynamics of transmission and timing of reporting during an epidemic in 1988–9. Epidemiology and Infection 114:345–359
    [Google Scholar]
  28. Liebert U. G., ter Meulen V. 1987; Virological aspects of measles virus-induced encephalomyelitis in Lewis and BN rats. Journal of General Virology 68:1715–1722
    [Google Scholar]
  29. Liebert U. G., Flanagan S. G., Loftier S., Baczko K., ter Meulen V., Rima B. K. 1994; Antigenic determinants of measles virus hemagglutinin associated with neurovirulence. Journal of Virology 68:1486–1493
    [Google Scholar]
  30. Mäkelä M. J., Salmi A. A., Norrby E., Wild T. F. 1989; Monoclonal antibodies against measles virus haemagglutinin react with synthetic peptides. Scandinavian Journal of Immunology 30:225–231
    [Google Scholar]
  31. Mori T., Sasaki K., Hashimoto H., Makino S. 1993; Molecular cloning and complete nucleotide sequence of genomic RNA of the AIK- C strain of attenuated measles virus. Virus Genes 7:67–81
    [Google Scholar]
  32. Muller C. P., Schroeder T., Tu R., Brons N. H., Jung G., Schneider F., Wiesmuller K. H. 1993; Analysis of the neutralizing antibody response to the measles virus using synthetic peptides of the haemagglutinin protein. Scandinavian Journal of Immunology 38:463–471
    [Google Scholar]
  33. Muller C. P., Beauverger P., Schneider F., Brons N. H. C. 1995; Cholera toxin B stimulates systemic neutralizing antibodies after intranasal co-immunization with measles virus. Journal of General Virology 76:1371–1380
    [Google Scholar]
  34. Neuberger M. S., Rajewsky K. 1981; Activation of mouse complement by mouse monoclonal antibodies. European Journal of Immunology 11:1012–1016
    [Google Scholar]
  35. Norrby E., Gollmar Y. 1972; Appearance and persistence of antibodies against different virus components after regular measles infections. Infection and Immunity 6:240–247
    [Google Scholar]
  36. Obeid O. E., Partidos C. D., Steward M. W. 1994; Analysis of the antigenic profile of measles virus haemagglutinin in mice and humans using overlapping synthetic peptides. Virus Research 32:69–84
    [Google Scholar]
  37. Obeid O. E., Partidos C. D., Howard C. R., Steward M. W. 1995; Protection against morbillivirus-induced encephalitis by immunization with a rationally designed synthetic peptide vaccine containing B- and T- cell epitopes from the fusion protein of measles virus. Journal of Virology 69:1420–1428
    [Google Scholar]
  38. Outlaw M. C., Pringle C. R. 1995; Sequence variation within an outbreak of measles virus in the Coventry area during spring/summer 1993. Virus Research 39:3–11
    [Google Scholar]
  39. Ravetch J. V., Kinet J. P. 1991; Fc receptors. Annual Review of Immunology 9:457–492
    [Google Scholar]
  40. Rima B. K. 1983; The proteins of morbilliviruses. Journal of General Virology 64:1205–1219
    [Google Scholar]
  41. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142
    [Google Scholar]
  42. Saito H., Sato H., Abe M., Harata S., Amano K., Suto T., Morita M. 1994; Cloning and characterization of the cDNA encoding the HA protein of a hemagglutination-defective measles virus strain. Virus Genes 8:107–113
    [Google Scholar]
  43. Schulz T. F., Hoad J. G., Whitby D., Tizard E. J., Dillon M. J., Weiss R. A. 1992; A measles virus isolate from a child with Kawasaki disease: sequence comparison with contemporaneous isolates from ‘classical’ cases. Journal of General Virology 73:1581–1586
    [Google Scholar]
  44. Shapira M., Jibson M., Muller G., Arnon R. 1984; Immunity and protection against influenza virus by synthetic peptide corresponding to antigenic sites of hemagglutinin. Proceedings of the National Academy of Sciences, USA 81:2461–2465
    [Google Scholar]
  45. Sheshberadaran H., Norrby E. 1986; Characterization of epitopes on the measles virus hemagglutinin. Virology 152:58–65
    [Google Scholar]
  46. Steward M. W., Stanley C. M., Obeid O. E. 1995; A mimotope from a solid-phase peptide library induces a measles virus-neutralizing and protective antibody response. Journal of Virology 69:7668–7673
    [Google Scholar]
  47. ter Meulen V., Loffler S., Carter M. J., Stephenson J. R. 1981; Antigenic characterization of measles and SSPE haemagglutinin by monoclonal antibodies. Journal of General Virology 57:357–364
    [Google Scholar]
  48. Tsukiyama K., Sugiyama M., Yoshikawa Y., Yamanouchi K. 1987; Molecular cloning and sequence analysis of the rinderpest virus mRNA encoding the hemagglutinin protein. Virology 160:48–54
    [Google Scholar]
  49. Varsanyi T. M., Morein B., Love A., Norrby E. 1987; Protection against lethal measles virus infection in mice by immune-stimulating complexes containing the hemagglutinin or fusion protein. Journal of Virology 61:3896–3901
    [Google Scholar]
  50. Walker M. C., Fast P. E. 1994; Clinical trials for candidate AIDS vaccine. AIDS 8: suppl 1213–236
    [Google Scholar]
  51. Wang C. Y., Looney D. J., Li M. L., Walfield A. M., Ye J., Hosein B., Tam J. P., Wong-Staal F. 1991; Long-term high-titer neutralizing activity induced by octameric synthetic HIV-1 antigen. Science 254:285–288
    [Google Scholar]
  52. Wiesmuller K. H., Spahn G., Handtmann D., Schneider F., Jung G., Muller C. P. 1992; Heterogeneity of linear B cell epitopes of the measles virus fusion protein reacting with late convalescent sera. Journal of General Virology 73:2211–2216
    [Google Scholar]
  53. Weiss R. 1992; Measles battle loses potent weapon. Science 258:546–547
    [Google Scholar]
  54. Yamanaka M., Hsu D., Crisp T., Dale B., Grubman M., Yilma T. 1988; Cloning and sequence analysis of the hemagglutinin gene of the virulent strain of rinderpest virus. Virology 166:251–253
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-10-2479
Loading
/content/journal/jgv/10.1099/0022-1317-77-10-2479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error