Essential role of NF-B in transactivation of the human immunodeficiency virus long terminal repeat by the human cytomegalovirus IE1 protein Free

Abstract

The 72 kDa IE1 protein of human cytomegalovirus (HCMV) is one of a few viral regulatory proteins expressed immediately after infection of a host cell. Although it is now well-established that IE1 is a potent transcriptional activator of the human immunodeficiency virus (HIV) long terminal repeat (LTR), the identity of the nucleotide sequence responsive to IE1 remains elusive and the molecular mechanism of this interaction is not well-understood. We have constructed various LTR mutants and tested them for their ability to be activated by IE1 using transient transfection assays. Mutations in the NF-κB sites, of either a few changes in the nucleotide sequence or a deletion of the entire region, abrogated IE1-driven transactivation. Deletion of the Tat-responsive element (TAR) had no significant effect on reporter expression. Mutations in the Sp1 sites or the TATA box significantly lowered LTR activity, but this is probably due to an effect on the general transcription system, as these elements are also required for the transactivation of the LTR by many stimulators including Tat, tumour necrosis factor alpha (TNF-α), E1A/E1B and phorbol myristate acetate (PMA). In addition, gel retardation analysis demonstrated that NF-κB activity was significantly increased in human T lymphoid H9 and monocytic U937 cell lines constitutively expressing IE1. Taken together, these data suggest that NF-κB plays a central role in the IE1 transactivation of the HIV LTR.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-1-83
1996-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/1/JV0770010083.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-1-83&mimeType=html&fmt=ahah

References

  1. Albrecht M. A., DeLuca N. A., Byrn R. A., Schaffer P. A., Hammer S. M. 1989; The herpes simplex virus immediate early protein, ICP4, is required to potentiate replication of human immunodeficiency virus in CD4+ lymphocytes. Journal of Virology 63:861–1868
    [Google Scholar]
  2. Barry P. A., Pratt-Lowe E., Peterlin B. M., LucIw P. A. 1990; Cytomegalovirus activates transcription directed by the long terminal repeat of human immunodeficiency virus type 1. Journal of Virology 64:2932–2940
    [Google Scholar]
  3. Beg A. A., Finco T. S., Nantermet P. V., Baldwin A. S. Jr 1993; Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of RKBa: a mechanism for NF-κB activation. Molecular and Cellular Biology 13:3301–3310
    [Google Scholar]
  4. Belec L., Gray F., Mikol J., Scaravilli F., Mhiri C., Sobel A., Poirier J. 1990; Cytomegalovirus (CMV) encephalo-myeloradiculitis and human immunodeficiency virus (HIV) encephalitis: presence of HIV and CMV co-infected multinucleated giant cells. Acta Neuropathologica 81:99–104
    [Google Scholar]
  5. Biegalke B. J., Geballe A. P. 1991; Sequence requirements for activation of the HIV-1 LTR by human cytomegalovirus. Virology 183:381–385
    [Google Scholar]
  6. Casareale D., Fiala M., Chang C. M., Cone L. A., Mocarski E. S. 1989; Cytomegalovirus enhances lysis of HIV-infected T lymphoblasts. International Journal of Cancer 44:124–130
    [Google Scholar]
  7. Cherrington J. M., Mocarski E. S. 1989; Human cytomegalovirus IE1 trans-activates the promoter-enhancer via an 18-base-pair repeat element. Journal of Virology 63:1435–1441
    [Google Scholar]
  8. Davis M. G., Kenney S. C., Kamine J., Pagano J. S., Huang E.-S. 1987; Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus. Proceedings of the National Academy of Sciences, USA 84:8642–8646
    [Google Scholar]
  9. Dignam J. D., Lebovitz R. M., Roeder R. G. 1983; Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research 11:1475–1488
    [Google Scholar]
  10. Einhorn L., Ost A. 1984; Cytomegalovirus infection of human blood cells. Journal of Infectious Diseases 149:207–214
    [Google Scholar]
  11. Ensoli B., Lusso P., Schachter F., Josephs S. F., Rappaport J., Negro F., Gallo R. C., Wong-Staal F. 1989; Human herpesvirus-6 increases HIV–1 expression in co-infected T cells via nuclear factors binding to the HIV-1 enhancer. EMBO Journal 8:3019–3027
    [Google Scholar]
  12. Fiala M., Cone L. A., Chang C. M., Mocaski E. S. 1986; Cytomegalovirus viremia increases with progressive immune deficiency in patients infected with HTLV-III. AIDS Research 2:175–181
    [Google Scholar]
  13. Finkle C., Tapper M. A., Knox K. K., Carrigan D. R. 1991; Coinfection of cells with the human immunodeficiency virus and cytomegalovirus in lung tissues of patients with AIDS. Journal of Acquired Immune Deficiency Syndromes 4:735–737
    [Google Scholar]
  14. Gendelman H. E., Phelps W., Feigenbaum L., Ostrove J. M., Adachi A., Howley P. M., Khoury G., Ginsberg H.-S., Martin M. A. 1986; Transactivation of the human immunodeficiency virus long terminal repeat by DNA viruses. Proceedings of the National Academy of Sciences, USA 83:9759–9763
    [Google Scholar]
  15. Ghazal P. J., Young E., Giulietti C., DeMattei C., Garcia J., Gaynor R., Stenberg R. M., Nelson J. M. 1991; A discrete cis element in the human immunodeficiency virus long terminal repeat mediates synergistic trans activation by cytomegalovirus immediate early proteins. Journal of Virology 65:6735–6742
    [Google Scholar]
  16. Gimble J. M., Duh E., Ostrove J. M., Gendelman H. E., Max E. E., Rabson A. B. 1988; Activation of the human immunodeficiency virus long terminal repeat by herpes simplex virus type 1 is associated with induction of a nuclear factor that binds to the NF-kB/core enhancer sequence. Journal of Virology 62:4104–4112
    [Google Scholar]
  17. Grosschedl R., Baltimore D. 1985; Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements. Cell 41:885–897
    [Google Scholar]
  18. Hagemeier C., Walker S., Caswell R., Kouzarides T., Sinclair J. 1992; The human immunodeficiency virus 80-kilodalton but not the 72-kilodalton immediate-early protein trans-activates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. Journal of Virology 66:4452–4456
    [Google Scholar]
  19. Harrich D., Garcia J., Wu F., Mitsuyasu R., Gonzalez J., Gaynor R. 1989; Role of Spl-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. Journal of Virology 63:2585–2591
    [Google Scholar]
  20. Harrich D., Garcia J., Mitsuyasu R., Gaynor R. 1990; Tar independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes. EMBO Journal 9:4417–4423
    [Google Scholar]
  21. Ho W.-Z., Harouse J. M., Rando R. F., Gönczöl E., Srinivasan A., Plotkin S. A. 1990; Reciprocal enhancement of gene expression and viral replication between human cytomegalovirus and human immunodeficiency virus type 1. Journal of General Virology 71:97–103
    [Google Scholar]
  22. Kim S., Ikeuchi K., Groopman J. G., Baltimore D. 1990; Factors affecting cellular tropism of human immunodeficiency virus. Journal of Virology 64:5600–5604
    [Google Scholar]
  23. Kliewer S., Garcia J. N. L., Soultanakis E., Dasgupta A., Gaynor R. 1989; Multiple transcriptional regulatory domains in the human immunodeficiency virus type 1 long terminal repeat are involved in basal and E1A/E1B–induced promoter activity. Journal of Virology 63:4616–4625
    [Google Scholar]
  24. Lee A., Lee K., Kim S., Sung Y. 1992; Transactivation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by the human foamy virus bell protein requires a specific DNA sequence. Journal of Virology 66:3236–3240
    [Google Scholar]
  25. Leonard J., Parrott C., Buckler–White A. J., Turner W., Ross E. K., Martin M. A., Rabson A. B. 1989; The NF–kB binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. Journal of Virology 63:4919–4924
    [Google Scholar]
  26. Lusso P., Ensoli B., Markham P. D., Ablashi D. V., Salahuddin S. Z., Tschachler E., Wong–Staal F., Gallo R. C. 1989; Productive dual infection of human CD4+ T lymphocytes by HIV–1 and HHV–6. Nature 337:370–373
    [Google Scholar]
  27. Macher A. M., Reichert C. M., Straus S. E., Longo D. L., Parrillo J., Lane H. C., Fauci A. S., Rook A. H., Manischewitz J. F., Quinnan G. V. Jr 1983; Death in AIDS patient: role of cytomegalovirus. New England Journal of Medicine 309:1454
    [Google Scholar]
  28. Maciejewski J. P., Bruening E. E., Donahue R. E., Sellers S. E., Carter C., Young N. S., St Jeor S. 1993; Infection of mononucleated phagocytes with human cytomegalovirus. Virology 195:327–336
    [Google Scholar]
  29. Mallon R., Borkowski J., Albin R., Pepitoni S., Schwartz J., Kieff E. 1990; Epstein-Barr virus BZLF1 gene product activates the human immunodeficiency virus type 1 5′ long terminal repeat. Journal of Virology 64:6282–6285
    [Google Scholar]
  30. Markovitz D. M., Kenney S., Kamine J., Smith M. S., Davis M., Huang E.-S., Rosen C., Pagano J. S. 1989; Disparate effects of two herpesvirus immediate-early gene trans-activators on the HIV–1 LTR. Virology 173:750–754
    [Google Scholar]
  31. Minton E. J., Tysoe C., Sinclair J. H., Sissons J. G. P. 1994; Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. Journal of Virology 68:4017–4021
    [Google Scholar]
  32. Mosca J. D., Bednarik D. P., Raj N. B. K., Rosen C. A., Sodroski J. G., Haseltine W. A., Hayward G. S., Pitha P. M. 1987; Activation of human immunodeficiency virus by herpes virus infection: identification of a region within the long terminal repeat that responds to a transacting factor encoded by herpes simplex virus 1. Proceedings of the National Academy of Sciences, USA 84:7408–7412
    [Google Scholar]
  33. Nabel G., Baltimore D. 1987; An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713
    [Google Scholar]
  34. Nelson J. A., Reynolds-Kohler C., Oldstone M. B. A., Wiley C. A. 1988; HIV and HCMV coinfect brain cells in patients with AIDS. Virology 165:286–290
    [Google Scholar]
  35. Nelson J. A., Ghazal P., Wiley C. A. 1990; Role of opportunistic infection in AIDS. AIDS 4:1–10
    [Google Scholar]
  36. Nowlin D. M., Cooper N. R., Compton T. 1991; Expression of a human cytomegalovirus receptor correlates with infectibility of cells. Journal of Virology 65:3114–3121
    [Google Scholar]
  37. Ostrove J. M., Leonard J., Weck K. E., Rabson A. B., Gendelman H. E. 1987; Activation of the human immunodeficiency virus by herpes simplex virus type 1. Journal of Virology 61:3726–3732
    [Google Scholar]
  38. Perkins N. D., Edwards N. L., Duckett C. S., Agranoff A. B., Schmid R. M., Nabel G. J. 1993; A cooperative interaction between NF-κB and Spl is required for HIV-1 enhancer activation. EMBO Journal 12:3551–3558
    [Google Scholar]
  39. Pierce J. W., Lenardo M., Baltimore D. 1988; Oligonucleotide that binds nuclear factor NF-κB acts as a lymphoid-specific and inducible enhancer element. Proceedings of the National Academy of Sciences, USA 85:1482–1486
    [Google Scholar]
  40. Rando R. F., Pellet P. E., Luciw P. A., Bohan C. A., Srinivasan A. 1987; Transactivation of the human immune-deficiency virus by herpesviruses. Oncogene 1:13–18
    [Google Scholar]
  41. Rando R. F., Srinivasan A., Feingold J., Gonczol E., Plotkin S. 1990; Characterization of multiple molecular interactions between human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1). Virology 176:87–97
    [Google Scholar]
  42. Rice G. P. A., Schrier R. D., Oldstone M. B. A. 1984; Cytomegalovirus infects human lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proceedings of the National Academy of Sciences, USA 81:6134–6138
    [Google Scholar]
  43. Sakaguchi M., Zenzie-Gregory B., Groopman J. E., Smale S. T., Kim S. 1991; Alternative pathway for induction of human immunodeficiency virus gene expression: involvement of the general transcription machinery. Journal of Virology 65:5448–5456
    [Google Scholar]
  44. Sambucetti L. C., Cherrington J. M., Wilkinson G. W., Mocarski E. S. 1989; NF-κB activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO Journal 8:4251–4258
    [Google Scholar]
  45. Schrier R. D., Nelson J. A., Oldstone M. B. A. 1985; Detection of human cytomegalovirus in peripheral blood lymphocytes in a natural infection. Science 230:1048–1051
    [Google Scholar]
  46. Skolnik P. R., Kosloff B. R., Hirsch M. S. 1988; Bidirectional interactions between human immunodeficiency virus type 1 and cytomegalovirus. Journal of Infectious Diseases 157:508–514
    [Google Scholar]
  47. Walker S., Hagemeier C., Sissons J. G. P., Sinclair J. H. 1992; A 10base pair element of the human immunodeficiency virus type 1 long terminal repeat (LTR) is an absolute requirement for transactivation by the human cytomegalovirus 72-kilodalton IE1 protein but can be compensated for by other LTR regions in transactivation by the 80-kilodalton IE2 protein. Journal of Virology 66:1543–1550
    [Google Scholar]
  48. Webster A., Lee C. A., Cook D. G., Grundy J. E., Emery V. C., Kernoff P. B. A., Griffiths P. D. 1989; Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection. Lancet ii:63–65
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-1-83
Loading
/content/journal/jgv/10.1099/0022-1317-77-1-83
Loading

Data & Media loading...

Most cited Most Cited RSS feed