1887

Abstract

Signal cleavage sites of equine herpesvirus 1 (EHV-1) glycoproteins D and B (gD and gB) and an endoproteolytic cleavage site of EHV-1 gB were determined by N-terminal amino acid sequencing and compared with known cleavage sites of homologues in other herpesviruses. Signal cleavage of EHV-1 gD occurred between Arg and Ala in a region of basic amino acids resembling the endoproteolytic cleavage sites of viral glycoproteins, nine amino acids downstream of the predicted site, while EHV-1 gB was cleaved as predicted between Ala and Val. Endoproteolytic cleavage of EHV-1 gB occurred between Arg and Ala, 28 amino acids downstream of the cleavage site predicted from conserved sequences of other herpesvirus gB homologues. One interpretation of these data is that EHV-1 gB is cleaved internally at both sites, a possibility which was supported by the apparent molecular masses of the unglycosylated gB subunits produced in the presence of tunicamycin. This double cleavage would release a stretch of amino acids which is not present in sequenced gB molecules of other herpesviruses. Experiments with glycosylation inhibitors indicated that cleavage of EHV-1 gB can occur in the absence of glycosylation. N-terminal sequencing also determined that a 42 kDa EHV-1 glycoprotein was a product of internal cleavage of the protein encoded by gene 71. Staggered endoproteolytic cleavage after adjacent arginine residues 506 and 507 separates the 42 kDa C-terminal subunit containing all the cysteine residues from the serine and threonine rich N-terminal region.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-1-75
1996-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/1/JV0770010075.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-1-75&mimeType=html&fmt=ahah

References

  1. Allen G. P., Yeargan M. R. 1987; Use of λ gtl 1 and monoclonal antibodies to map the genes for the six major glycoproteins of equine herpesvirus 1. Journal of Virology 61:2454–2461
    [Google Scholar]
  2. Audonnet J. C., Winslow J., Allen G., Paoletti E. 1990; Equine herpesvirus type 1 unique short fragment encodes glycoproteins with homology to herpes simplex virus type 1 gD, gI and gE. Journal of General Virology 71:2969–2978
    [Google Scholar]
  3. Blacklaws B. A., Nash A. A. 1990; Immunological memory to herpes simplex virus type 1 glycoproteins B and D in mice. Journal of General Virology 71:863–871
    [Google Scholar]
  4. Blewett E. L., Misra V. 1991; Cleavage of the bovine herpesvirus glycoprotein B is not essential for its function. Journal of General Virology 72:2083–2090
    [Google Scholar]
  5. Britt W. J., Vugler L. G. 1989; Processing of the gp55–116 envelope glycoprotein complex (gB) of human cytomegalovirus. Journal of Virology 63:403–410
    [Google Scholar]
  6. Campadelli-Fiume G., Serafini Cessi F. 1985; Processing of the oligosaccharide chains of herpes simplex virus type 1 glycoproteins. In The Herpesviruses vol 3 pp 357–382 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  7. Claesson-Welsh L., Spear P. G. 1987; Amino-terminal sequence, synthesis, and membrane insertion of glycoprotein B of herpes simplex virus type 1. Journal of Virology 61:1–7
    [Google Scholar]
  8. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  9. Doms R. W., Lamb R. A., Rose J. K., Helenius A. 1993; Folding and assembly of viral membrane proteins. Virology 193:545–562
    [Google Scholar]
  10. Eisenberg R. J., Long D., Hogue-Angeletti R., Cohen G. H. 1984; Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2. Journal of Virology 49:265–268
    [Google Scholar]
  11. Flowers C. C., Eastman E. M., O’Callaghan D. J. 1991; Sequence analysis of a glycoprotein D gene homolog within the unique short segment of the EHV-1 genome. Virology 180:175–184
    [Google Scholar]
  12. Johnson D. C., Spear P. G. 1983; O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell 32:987–997
    [Google Scholar]
  13. Keller P. M., Davison A. J., Lowe R. S., Bennett C. D., Ellis R. W. 1986; Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster virus. Virology 152:181–191
    [Google Scholar]
  14. Kopp A., Blewett E., Misra V., Mettenleiter T. C. 1994; Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus. Journal of Virology 68:1667–1674
    [Google Scholar]
  15. Kornfeld R., Kornfeld S. 1985; Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry 54:631–664
    [Google Scholar]
  16. Kyhse-Andersen J. 1984; Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods 10:203–209
    [Google Scholar]
  17. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 151:105–132
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  19. Love D. N., Bell C. W., Whalley J. M. 1992; Characterization of the glycoprotein D gene products of equine herpesvirus 1 using a prokaryotic cell expression vector. Veterinary Microbiology 30:387–394
    [Google Scholar]
  20. McCune J. M., Rabin L. B., Feinberg M. B., Lieberman M., Kosek J. C., Reyes G. R., Weissman I. L. 1988; Endoproteolyic cleavage of gpl60 is required for the activation of human immunodeficiency virus. Cell 53:55–67
    [Google Scholar]
  21. McGeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  22. Manservigi R., Cassai E. 1991; The glycoproteins of the human herpesviruses. Comparative Immunology Microbiology and Infectious Diseases 14:81–95
    [Google Scholar]
  23. Meredith D. M., Stocks J.-M., Whittaker G. R., Halliburton I. W., Snowden B. W., Killington R. A. 1989; Identification of the gB homologues of equine herpesvirus types 1 and 4 as disulphide-linked heterodimers and their characterization using monoclonal antibodies. Journal of General Virology 70:1161–1172
    [Google Scholar]
  24. Nagesha H. S., Crabb B. S., Studdert M. J. 1993; Analysis of the nucleotide sequence of 5 genes at the left end of the unique short region of the equine herpesvirus-4 genome. Archives of Virology 128:143–154
    [Google Scholar]
  25. Pachl C., Burke R. L., Stuve L. L., Sanchez-Pescador L., Van Nest G., Masiarz F., Dina D. 1987; Expression of cell-associated and secreted forms of herpes simplex virus type 1 glycoprotein gB in mammalian cells. Journal of Virology 61:315–325
    [Google Scholar]
  26. Pereira L. 1994; Function of glycoprotein B homologues of the family herpesviridae. Infectious Agents and Disease 3:9–28
    [Google Scholar]
  27. Perez L. G., Hunter E. 1987; Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein that block processing to gp85 and gp37. Journal of Virology 61:1609–1614
    [Google Scholar]
  28. Perlman D., Halvorsen H. O. 1983; A putative signal peptidase recognition site and sequence in eukaryotic and prokayotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  29. Spaete R. R., Thayer R. M., Probert W. S., Masiarz F. R., Chamberlain S. H., Rasmussen L., Merigan T. C., Pachl C. 1988; Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage. Virology 167:207–225
    [Google Scholar]
  30. Spaete R. R., Saxena A., Scott P. I., Song G. J., Probert W. S., Britt W. J., Gibson W., Rasmussen L., Pachl C. 1990; Sequence requirements for proteolytic processing of glycoprotein B of human cytomegalovirus strain Towne. Journal of Virology 64:2922–2931
    [Google Scholar]
  31. Spear P. G. 1985; Glycoproteins specified by herpes simplex viruses. In The Herpesviruses vol 3 pp 315–356 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  32. Spear P. G. 1987; Virus-induced cell fusion. In Cell Fusion pp 3–32 Edited by Sowers A. E. New York: Plenum Press;
    [Google Scholar]
  33. Sullivan D. C., Allen G. P., O’Callaghan D. J. 1989; Synthesis and processing of equine herpesvirus type 1 glycoprotein 14. Virology 173:638–646
    [Google Scholar]
  34. Sun Y., Brown S. M. 1994; The open reading frames 1, 2, 71, and 75 are nonessential for the replication of equine herpesvirus type 1 in vitro. Virology 199:448–452
    [Google Scholar]
  35. Sun Y., MacLean A. R., Dargan D., Brown S. M. 1994; Identification and characterization of the protein product of gene 71 in equine herpesvirus 1. Journal of General Virology 75:3117–3126
    [Google Scholar]
  36. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus 1. Virology 189:304–316
    [Google Scholar]
  37. Tikoo S. K., Fitzpatrick D. R., Babiuk L. A., Zamb T. J. 1990; Molecular cloning, sequencing, and expression of functional bovine herpesvirus 1 glycoprotein gIV in transfected bovine cells. Journal of Virology 64:5132–5142
    [Google Scholar]
  38. von Heijne G. 1984; How signal sequences maintain cleavage specificity. Journal of Molecular Biology 173:243–251
    [Google Scholar]
  39. Walker J. A., Kawaoka Y. 1993; Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus. Journal of General Virology 74:311–314
    [Google Scholar]
  40. Wellington J. E., Love D. N., Whalley J. M. 1995; Evidence for involvement of equine herpesvirus 1 glycoprotein B in cell-cell fusion. Archives of Virology (in press)
    [Google Scholar]
  41. Whalley J. M., Robertson G. R., Davison A. J. 1981; Analysis of the genome of equine herpesvirus type 1: arrangement of cleavage sites for restriction endonucleases Eco RI, Bgl II and Bam HI. Journal of General Virology 57:307–323
    [Google Scholar]
  42. Whalley J. M., Robertson G. R., Scott N. A., Hudson G. C., Bell C. W., Woodworth L. M. 1989; Identification and nucleotide sequence of a gene in equine herpesvirus 1 analogous to the herpes simplex virus gene encoding the major envelope glycoprotein gB. Journal of General Virology 70:383–394
    [Google Scholar]
  43. Whalley M., Robertson G., Bell C., Love D., Elphinstone M., Wiley L., Craven D. 1991; Identification and comparative sequence analysis of a gene in equine herpesvirus 1 with homology to the herpes simplex virus glycoprotein D gene. Virus Genes 5:313–325
    [Google Scholar]
  44. Whealy M. E., Robbins A. K., Enquist L. W. 1990; The export pathway of the pseudorabies virus gB homolog gll involves oligomer formation in the endoplasmic reticulum and protease processing in the Golgi apparatus. Journal of Virology 64:1946–1955
    [Google Scholar]
  45. White J. M. 1990; Viral and cellular membrane fusion proteins. Annual Review of Physiology 52:675–697
    [Google Scholar]
  46. Wiley D. C. 1985; Viral membranes. In Virology pp 45–67 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  47. Wölfer U., Kruft V., Sawitzky D., Hampl H., Wittman-Liebold B., Habermehl K.-O. 1990; Processing of pseudorabies virus glycoprotein gll. Journal of Virology 64:3122–3125
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-1-75
Loading
/content/journal/jgv/10.1099/0022-1317-77-1-75
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error