1887

Abstract

The pathogenicity of neutralization-resistant mutants of the enteric coronavirus transmissible gastroenteritis virus (TGEV) was examined in the newborn piglet. The parental virus (Purdue-115 strain), as well as several mutants selected using monoclonal antibodies (MAbs) directed to antigenic sites A and B, caused an acute enteritis with 100% mortality. By contrast, most of the site D (MAb 40.1) mutants exhibited a strongly reduced enteropathogenicity, leading to the survival of animals inoculated with up to 1000-fold the 100% lethal dose of parental virus. Such a phenotypical change was correlated with point mutations or a small deletion, all located within the S gene sequence coding for the Pro-145 to Cys-155 segment of the mature polypeptide. These observations suggest that an N-terminal subregion of the S molecule is an essential determinant for pathogenesis in TGEV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-9-2235
1995-09-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/9/JV0760092235.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-9-2235&mimeType=html&fmt=ahah

References

  1. Aynaud J.-M., Nguyen T. D., Bottreau E., Brun A., Vannier P. 1985; Transmissible gastroenteritis (TGE) of swine: survivor selection of TGE virus mutants in stomach juice of adult pigs. Journal of General Virology 66:1911–1917
    [Google Scholar]
  2. Bernard S., Lantier I., Laude H., Aynaud J. M. 1986; Detection of transmissible gastroenteritis antigens by a sandwich enzyme-linked immunosorbent assay technique. American Journal of Veterinary Research 41:2441–2444
    [Google Scholar]
  3. Britton P., Kottier S., Chen C. M., Pocock D. H., Salmon H., Aynaud J.M. 1993; The use of PCR genome mapping for the characterization of TGEV strains. In Coronaviruses: Molecular Biology and Virus-Host Interactions pp 29–34 Edited by Laude H., Vautherot J. F. New York: Plenum Press;
    [Google Scholar]
  4. Correa I., Gebauer F., Bullido M. J., Sune C., Baay M. F. D., Zwaagstra K. A., Posthumus W. P. A., Lenstra J. A., Enjuanes L. 1990; Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. Journal of General Virology 71:271–279
    [Google Scholar]
  5. Cox E., Hooyberghs J., Pensaert M. 1990; Sites of replication of a porcine coronavirus related to transmissible gastroenteritis virus. Research in Veterinary Science 48:165–169
    [Google Scholar]
  6. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  7. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. Journal of General Virology 71:1313–1323
    [Google Scholar]
  8. Delmas B., Gelfi J., L’Haridon R., Vogel L. K., Sjostrom H., Noren O., Laude H. 1992; Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–419
    [Google Scholar]
  9. Delmas B., Gelfi J., Sjostrom H., Noren O., Laude H. 1993; Further characterization of aminopeptidase-N as a receptor for coronaviruses. In Coronaviruses: Molecular Biology and Virus-Host Interactions pp 293–298 Edited by Laude H., Vautherot J. F. New York: Plenum Press;
    [Google Scholar]
  10. Eleouet J. F., Rasschaert D., Lambert P., Levy L., Vende P., Laude H. 1995; Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206:817–822
    [Google Scholar]
  11. Fazakerley J. K., Parker S. E., Bloom F., Buchmeier M. J. 1992; The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology 187:178–188
    [Google Scholar]
  12. Frederick G. T., Bohl E. H., Cross R. F. 1976; Pathogenicity of an attenuated strain of transmissible gastroenteritis virus for newborn pigs. American Journalfor Veterinary Research 37:165–169
    [Google Scholar]
  13. Godet M., L’Haridon R., Vautherot J. F., Laude H. 1992; TGEV coronavirus ORF4 encodes a membrane protein that is incorporated into virions. Virology 188:666–675
    [Google Scholar]
  14. Godet M., Grosclaude J., Delmas B., Laude H. 1994; Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. Journal of Virology 68:8008–8016
    [Google Scholar]
  15. La Bonnardiere C., Laude H. 1981; High titer of interferon in the pig intestine during experimentally induced viral enteritis. Infection and Immunity 32:28–31
    [Google Scholar]
  16. La Bonnardiere C., Laude H. 1983; Interferon induction in rotavirus and coronavirus infections: a review of recent results. Annals of Veterinary Research 14:507–511
    [Google Scholar]
  17. Laude H., Charley B., Gelfi J. 1984; Replication of transmissible gastroenteritis coronavirus (TGEV) in swine alveolar macrophages. Journal of General Virology 65:327–332
    [Google Scholar]
  18. Laude H., Chapsal J. M., Gelfi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virions proteins. Journal of Virology 67:119–130
    [Google Scholar]
  19. Laude H., Chapsal J. M., Gelfi J., Lavenant L., Charley B. 1992; Single amino acid changes in the viral glycoprotein M affect induction of interferon synthesis by the coronavirus transmissible gastroenteritis virus. Journal of Virology 66:743–749
    [Google Scholar]
  20. Laude H., van Reeth K., Pensaert M. 1993; Porcine respiratory coronavirus: molecular features and virus-host interactions. Veterinary Research 24:125–150
    [Google Scholar]
  21. Pensaert M., Haelterman E. O., Burnstein T. 1970; Transmissible gastroenteritis of swine: virus-intestine cell-interactions. Archiv fur die gesamte Virusforschung 31:321–334
    [Google Scholar]
  22. Pensaert M., Callebaut P., Cox E. 1993; Enteric coronaviruses of animals. In Viral Infections of the Gastrointestinal Tract 2nd edn pp 627–696 Edited by Kapikian A. Z. New York: Marcel Dekker;
    [Google Scholar]
  23. Prabhakar B. S., Notkins A. L. 1984; Antigenic variants and their relevance to clinical disease. In Concepts in Viral Pathogenesis pp 152–158 Edited by Notkins A. L., Oldstone M. B. A. New York: Springer-Verlag;
    [Google Scholar]
  24. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  25. Rasschaert D., Duarte M., Laude H. 1990; Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. Journal of General Virology 71:2599–2607
    [Google Scholar]
  26. Sanchez C. M., Gebauer F., Sune C., Mendez A., Dopazo J., Enjuanes L. 1992; Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105
    [Google Scholar]
  27. Smith D. B., Inglis S. C. 1987; The mutation rate and variability of eukaryotic viruses: an analytical review. Journal of General Virology 68:2729–2740
    [Google Scholar]
  28. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  29. To L.T., Bernard S. 1992; Effect of fixation on the detection of transmissible gastroenteritis coronavirus antigens by the fixed-cell immunoperoxidase technique. Journal of Immunological Methods 154:195–204
    [Google Scholar]
  30. VanCott J. L., Brim T. A., Simkins R. A., Saif L. J. 1993; Isotype-specific antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of suckling pigs. Journal of Immunology 150:3990–1000
    [Google Scholar]
  31. Wang F. I., Fleming J. O., Lai M. C. L. 1992; Sequence analysis of the spike protein gene of murine coronavirus variants: study of genetic sites affecting neuropathogenicity. Virology 186:742–749
    [Google Scholar]
  32. Weingartl H. M., Derbyshire J. B. 1994; Evidence for a putative second receptor for porcine transmissible gastroenteritis virus on the villous enterocytes of newborn pigs. Journal of Virology 68:7253–7259
    [Google Scholar]
  33. Wesley R. D., Woods R. D., Cheung A. K. 1990; Genetic basis for the pathogenesis of transmissible virus. Journal of Virology 64:4761–1776
    [Google Scholar]
  34. Wesley R. D., Woods R. D., Cheung A. K. 1991; Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis coronavirus. Journal of Virology 65:3369–3373
    [Google Scholar]
  35. Zimmern D., Kaesberg P. 1978; 3′ terminal nucleotide sequence of encephalomyocarditis virus RNA determined by reverse transcriptase and chain-termination inhibitors. Proceedings of the National Academy of Sciences, USA 75:4257–4261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-9-2235
Loading
/content/journal/jgv/10.1099/0022-1317-76-9-2235
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error