1887

Abstract

We have used the vaccinia virus-T7 RNA polymerase-based expression system for studies on the activity of proteases from various retroviruses on homologous and heterologous Gag polyproteins in eukaryotic cells. Proteases from human immunodeficiency virus (HIV) types 1 and 2, equine infectious anaemia virus, human T cell leukaemia virus type 1 and human spumavirus were produced and were shown to cleave their cognate Gag substrates produced . Analysis of cross reactivity revealed that lentivirus proteases cleaved only lentivirus Gag proteins and oncovirus proteases acted primarily on oncovirus Gag proteins. The HIV-2 protease cleaved the HIV-1 Gag precursor almost as efficiently as HIV-1 protease. Expression of the 5′ end of the human spumavirus gene revealed that it encodes a functional protease that acts specifically on the human spumavirus Gag polyprotein. This assay will allow further investigation on the activity and specificity of retrovirus proteases in eukaryotic cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-9-2169
1995-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/9/JV0760092169.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-9-2169&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–291
    [Google Scholar]
  2. Aguzzi A. 1993; The foamy virus family: molecular biology, epidemiology and neuropathology. Biochimica et Biophysica Acta 1155:1–24
    [Google Scholar]
  3. Aguzzi A., Wagner E. F., Netzer K.-O., Bothe K., Anhauser I., Rethwilm A. 1993; Human foamy virus proteins accumulate in neurons and induce multinucleated giant cells in the brain of transgenic mice. American Journal of Pathology 142:1061–1071
    [Google Scholar]
  4. Baunach G., Maurier B., Hahn H., Kranz M., Rethwilm A. 1993; Functional analysis of human foamy virus accessory reading frames. Journal of Virology 67:5411–5418
    [Google Scholar]
  5. Burstein H., Bizub D., Skalka A. M. 1991; Assembly and processing of avian retrovirus gag polyproteins containing linked protease dimers. Journal of Virology 65:6165–6172
    [Google Scholar]
  6. Cameron C. E., Ridky T. W., Shulenin S., Leis J., Weber I. T., Copeland T., Wlodawer A., Burstein H., Bizub-Bender D., Skalka A. M. 1994; Mutational analysis of the substrate binding pocket of the Rous sarcoma virus and human immunodeficiency virus-1 proteases. Journal of Biological Chemistry 269:11170–11177
    [Google Scholar]
  7. Derse D. 1987; Bovine leukemia virus transcription is controlled by a virus-encoded trans-acting factor and by cis-acting response elements. Journal of Virology 61:2462–2471
    [Google Scholar]
  8. El-Farrash M., Kuroda M. J., Kitazaki T., Masuda T., Kato K., Hatanaka M., Harada S. 1994; Generation and characterization of a human immunodeficiency virus type 1 (HIV-1) mutant resistant to an HIV-1 protease inhibitor. Journal of Virology 68:233–239
    [Google Scholar]
  9. Felber B. K., Derse D., Athanassopoulos A., Campbell M., Pavlakis G. N. 1989; Cross-activation of the rex proteins of HTLV-1 and BLV and of the Rev protein of HIV-1 and nonreciprocal interactions with their RNA responsive elements. New Biologist 1:318–330
    [Google Scholar]
  10. Flügel R. M. 1991; Spumaviruses: a group of complex retroviruses. Journal of Acquired Immune Deficiency Syndromes 4:739–750
    [Google Scholar]
  11. Flügel R. M., Rethwilm A., Maurer B., Darai G. 1987; Nucleotide sequence analysis of the env gene and its flanking regions of the human spumavirus reveals two novel genes. EMBO Journal 6:2077–2084
    [Google Scholar]
  12. Franchini G., Fargnoli K. A., Giombini F., Jagodzinski L., De Rossi A., Bosch M., Biberfeld G., Fenyö E. M., Albert J., Gallo R. C., Wong-Staal F. 1989; Molecular and biological characterization of a replication competent human immunodeficiency type 2 (HIV-2) proviral clone. Proceedings of the National Academy of Sciences, USA 86:2433–2437
    [Google Scholar]
  13. Fuerst T., Earl P. L., Moss B. 1987; Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Molecular and Cellular Biology 7:2538–2544
    [Google Scholar]
  14. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eucaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  15. Gelderblom H. R. 1991; Assembly and morphology of HIV: potential effect of structure on viral function. AIDS 5:617–638
    [Google Scholar]
  16. Goobar-Larsson L., Luukkonen B. G. M., Unge T., Schwartz S., Utter G., Strandberg B., Öberg B. 1995; Enhancement of HIV-1 proteinase activity by HIV-1 reverse transcriptase. Virology 206:387–394
    [Google Scholar]
  17. Göttlinger H. G., Sodroski J. G., Haseltine W. A. 1989; Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 86:5781–5785
    [Google Scholar]
  18. Hatfield D., Oroszlan S. 1990; Ribosomal frameshifting in retroviral protein synthesis. Trends in Biochemical Science 15:186–190
    [Google Scholar]
  19. Henderson L. E., Sowder R. C., Smythers G. W., Oroszlan S. 1987; Chemical and immunological characterizations of equine infectious anemia virus gag-encoded proteins. Journal of Virology 61:1116–1124
    [Google Scholar]
  20. Hinkula J., Rosen J., Sundqvist V.-A., Stigbrand T., Wahren B. 1990; Epitope mapping of HIV-1 gag region with monoclonal antibodies. Molecular Immunology 27:395–403
    [Google Scholar]
  21. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988; Characterization of ribosomal frameshifting in HIV-1 gag–pol expression. Nature 331:280–283
    [Google Scholar]
  22. Karacostas V., Wolffe E. J., Nagashima K., Gonda M. A., Moss B. 1993; Overexpression of the HIV-1 Gag-Pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193:661–671
    [Google Scholar]
  23. Khan A. S., Stephenson J. R. 1979; Feline sarcoma virus-coded polyprotein: enzymatic cleavage by a type C virus-coded structural protein. Journal of Virology 29:649–656
    [Google Scholar]
  24. Kräusslich H.-G. 1991; Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proceedings of the National Academy of Sciences, USA 88:3213–3217
    [Google Scholar]
  25. Kräusslich H. G. 1992; Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a singlechain proteinase dimer and restores particle formation. Journal of Virology 66:567–572
    [Google Scholar]
  26. Kräusslich H.-G., von der Helm K. 1987; Characterization of a virus-specific proteolytic activity processing the gag precursor of the simian sarcoma-associated virus. Virology 156:246–252
    [Google Scholar]
  27. Kräusslich H.-G., Wimmer E. 1988; Viral proteinases. Annual Review of Biochemistry 57:701–754
    [Google Scholar]
  28. Le Grice S. F. J., Ette R., Mills J., Mous J. 1989; Comparison of the human immunodeficiency virus type 1 and 2 proteases by hybrid gene construction and trans-complementation. Journal of Biological Chemistry 264:14902–14908
    [Google Scholar]
  29. Loeb D. D., Swanstrom R., Everitt L., Manchester M., Stamper S. E., Hutchinson C. A. III 1989; Complete mutagenesis of the HIV-1 protease. Nature 340:397–400
    [Google Scholar]
  30. Luukkonen B. G. M., Fenyö E. M., Schwartz S. 1995; Overexpression of human immunodeficiency virus type 1 protease increases intracellular cleavage of Gag and reduces virus infectivity. Virology 206:854–865
    [Google Scholar]
  31. Maurer B., Bannert H., Darai G., Flügel R. M. 1988; Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. Journal of Virology 62:1590–1597
    [Google Scholar]
  32. Mergener K., Fäcke M., Welker R., Brinkmann V., Gelderblom Fi. R., Kräusslich Fi.-G. 1992; Analysis of HIV particle formation using transient expression of subviral constructs in mammalian cells. Virology 186:25–39
    [Google Scholar]
  33. Miyakoshi H., Sugimoto M., Igarashi H., Honda H., Fujino R., Mizukoshi M. 1992; Improvement of simultaneous detection of antibodies to Gag and envelope antigens of human T-lymphotropic virus type 1 by western immunoblot assay. Journal of Clinical Microbiology 30:2555–2559
    [Google Scholar]
  34. Miyoshi I., Kubonishi I., Yoshimoto S., Akagi T., Ohtsuki Y., Shiraishi Y., Nagata K., Hinuma Y. 1981; Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukemic T-cells. Nature 294:770–771
    [Google Scholar]
  35. Myers G. 1990; Human retroviruses and AIDS. A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos, New Mexico: Los Alamos National Laboratory (1990);
    [Google Scholar]
  36. Nagy K., Young M., Baboonian C., Merson J., Whittle P., Oroszlan S. 1994; Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role of protease in the early phase. Journal of Virology 68:757–765
    [Google Scholar]
  37. Nam S. H., Hatanaka M. 1986; Identification of protease gene of human T-cell leukemia virus type 1 (HTLV-1) and its structural comparison. Biochemical and Biophysical Research Communications 139:129–135
    [Google Scholar]
  38. Netzer K.-O., Schliephake A., Maurer B., Watanabe R., Aguzzi A., Rethwilm A. 1993; Identification of pol-related gene products of human foamy virus. Virology 192:336–338
    [Google Scholar]
  39. Oroszlan S., Luftig R. B. 1990; Retroviral proteinases. Current Topics in Microbiology and Immunology 157:153–185
    [Google Scholar]
  40. Pearl L. H., Taylor W. R. 1987; Sequence specificity of retroviral proteases. Nature 328:482
    [Google Scholar]
  41. Ratner L., Fisher A., Jagodzinski L. L., Liou R. S., Mitsuya H., Gallo R. C., Wong-Staal F. 1987a; Complete nucleotide sequences of functional clones of the virus associated with the acquired immunodeficiency syndrome, HTLV-III/LAV. Hama-tology und Bluttransfusion 31:404–406
    [Google Scholar]
  42. Ratner L., Fisher A., Jagodzinski L. L., Mitsuya H., Liou R. S., Gallo R. C., Wong-Staal F. 1987b; Complete nucleotide sequences of functional clones of the AIDS virus. AIDS Research and Retroviruses 3:57–69
    [Google Scholar]
  43. Roberts M. M., Copeland T. D., Oroszlan S. 1991; In situ processing of a retroviral nucleocapsid protein by the viral proteinase. Protein Engineering 4:695–700
    [Google Scholar]
  44. Schwartz S., Campbell M., Nasioulas G., Harrison J., Felber B. K., Pavlakis G. N. 1992; Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression. Journal of Virology 66:7176–7182
    [Google Scholar]
  45. Seelmeier S., Schmidt H., Turn V., von def Helm K. 1988; Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proceedings of the National Academy of Sciences, USA 85:6612–6616
    [Google Scholar]
  46. Smith A. J., Srinivasakumar N., Hammarskjöld M.-L., Rekosh D. 1993; Requirements for incorporation of Prl60gag-pol from human immunodeficiency virus type 1 into virus-like particles. Journal of Virology 67:2266–2275
    [Google Scholar]
  47. Stephens R. M., Casey J. W., Rice N. R. 1986; Equine infectious anemia virus gag and pol genes: relatedness to visna and AIDS virus. Science 231:589–594
    [Google Scholar]
  48. Tomasselli A. G., Hui J. O., Sawyer T. K., Staples D. J., Bannow C. A., Reardon I. M., Chaudhary V. K., Fryling C. M., Pastan I., Fitzgerald D. J., Heinrikson R. L. 1990; Proteases from human immunodeficiency virus and avian myeloblastosis virus show distinct specificities in hydrolysis of multidomain protein substrates. Journal of Virology 64:3157–3161
    [Google Scholar]
  49. Töszér J., Bláha I., Copeland T., Wondrak E. M., Oroszlan S. 1991; Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in Gag and Gag–Pol polyproteins. FEBS Letters 281:77–80
    [Google Scholar]
  50. Tritch R. J., Cheng Y.-S. E., Yin F. H., Erickson-Viitanen S. 1991; Mutagenesis of protease cleavage sites in human immunodeficiency virus type 1 gag polyprotein. Journal of Virology 65:922–930
    [Google Scholar]
  51. Weiss R., Teich N., Varmus H., Coffin J. 1985 RNA Tumor Viruses In Molecular Biology of Tumor Viruses New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  52. Wills J. W., Craven R. C. 1991; Form, function, and use of retroviral Gag proteins. AIDS 5:639–654
    [Google Scholar]
  53. Wu J. C., Carr S. F., Jarnagin K., Kirsher S., Barnett J., Chow J., Chan H. W., Chen M. S., Medzhiradszky D., Yamashiro D., Santi D. V. 1990; Synthetic HIV-2 protease cleaves the GAG precursor of HIV-1 with the same specificity as HIV-1 protease. Archives of Biochemistry and Biophysics 277:306–311
    [Google Scholar]
  54. Yoshinaka Y., Katoh I., Copeland T., Oroszlan S. 1985; Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease. Journal of Virology 55:870–873
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-9-2169
Loading
/content/journal/jgv/10.1099/0022-1317-76-9-2169
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error