1887

Abstract

Several studies have demonstrated a functional role for the V1-V2 region of the human immunodeficiency virus type 1 (HIV-1) envelope surface glycoprotein gp120 in the membrane fusion processes underlying viral entry and syncytium induction. In a study with chimeric primary envelope genes, we have previously demonstrated that the exchange of V2 regions was sufficient to transfer syncytium-inducing capacity to a non-syncytium-inducing envelope protein. The exchanged V2 regions, comprising a number of variable amino acids, conferred changes to both the predicted secondary structure and to the net positive charge of the V2 loops. In a syncytium-forming assay based on transient envelope protein expression in CD4 SupT1 cells, we have extended this observation by mutating the variable positions of the V2 region to determine the relative contribution of individual amino acids to syncytium formation. It can be shown that simultaneous mutation of multiple amino acids is needed to interfere with the V2 region-determined syncytium-inducing phenotype. Single amino acid changes either influencing charge or predicted secondary structure of the V2 loop proved to be insufficient to abolish V2 region-controlled syncytium formation. This robust V2 organization may allow the virus to accumulate mutations, while retaining its biological phenotype.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-8-1901
1995-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/8/JV0760081901.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-8-1901&mimeType=html&fmt=ahah

References

  1. Andeweg A. C., Groenink M., Leeflang P., De Goede R. E. Y., Osterhaus A. D. M. E., Tersmette M., Bosch M. L. 1992; Genetic and functional analysis of a set of human immunodeficiency virus type 1 envelope genes obtained from biological clones with varying syncytium inducing capacities. AIDS Research and Human Retroviruses 8:1803–1813
    [Google Scholar]
  2. Andeweg A. C., Leeflang P., Osterhaus A. D. M. E., Bosch M. 1993; Both the V2 and V3 regions of the human immunodeficiency virus type 1 surface glycoprotein functionally interact with other envelope regions in syncytium formation. Journal of Virology 67:3232–3239
    [Google Scholar]
  3. Bosch M. L., Andeweg A. C., Schipper R., Renter M. 1994; Insertion of N-linked glycosylation sites in the variable regions of the human immunodeficiency virus type 1 surface glycoprotein through AAT triplet reiteration. Journal of Virology 68:7566–7569
    [Google Scholar]
  4. Boyd M. T., Simpson G. R., Cann A. J., Johnson M. A., Weiss R. A. 1993; A single amino acid substitution in the VI loop of human immunodeficiency virus type 1 gpl20 alters cellular tropism. Journal of Virology 67:3649–3652
    [Google Scholar]
  5. Dalgleish A. G., Beverley P. C. L., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767
    [Google Scholar]
  6. Davis D., Stephens D. M., Carne C. A., Lachmann P. J. 1993; Antisera raised against the second variable region of the external envelope glycoprotein of human immunodeficiency virus type 1 cross-neutralize and show an increased neutralization index when they act together with antisera to the V3 neutralization epitope. Journal of General Virology 74:2609–2617
    [Google Scholar]
  7. Deng W. P., Nickoloff J. A. 1992; Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Analytical Biochemistry 200:81–88
    [Google Scholar]
  8. Dubay J. W., Roberts S. J., Hahn B. H., Hunter E. H. 1992; Truncation of the human immunodeficiency virus type I transmembrane glycoprotein cytoplasmic domain blocks vims infectivity. Journal of Virology 66:6616–6625
    [Google Scholar]
  9. Fouchier R. A. M., Groenink M., Kootstra N. A., Tersmette M., Huisman H. G., Miedema F., Schuitemaker H. 1992; Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gpl20 molecule. Journal of Virology 66:3183–3187
    [Google Scholar]
  10. Freed E. O., Martin M. A. 1994; Evidence for a functional interaction between the VI/V2 and C4 domains of human immunodeficiency virus type 1 envelope glycoprotein gpl20. Journal of Virology 68:2503–2512
    [Google Scholar]
  11. Fung M. S. C., Sun C. R. Y., Gordon W. L., Liou R. S., Chang T. W., Sun W. N. C., Daar E. S., Ho D. D. 1992; Identification and characterization of a neutralization site within the second variable region of human immunodeficiency virus type-1 gp120. Journal of Virology 66:848–856
    [Google Scholar]
  12. Garnier J., Osguthorpe D., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120:97–120
    [Google Scholar]
  13. Gorny M. K., Xu J. Y., Karwowska S., Buchbinder A., Zolla-Pazner S. 1993; Repertoire of neutralizing human monoclonal antibodies specific for the V3 domain of HIV-1 gpl20. Journal of Immunology 150:635–643
    [Google Scholar]
  14. Gorny M. K., Moore J. P., Conley A. J., Karwowska S., Sodroski J., Williams C., Burda S., Boots L. J., Zolla-Pazner S. 1994; Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1. Journal of Virology 68:8312–8320
    [Google Scholar]
  15. Groenink M., Fouchier R. A. M., Broersen S., Baker C. H., Koot M., van’t Wout A. B., Huisman H. G., Miedema F., Tersmette M., Schuitemaker H. 1993; Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science 260:1513–1516
    [Google Scholar]
  16. Hart T. K., Kirsh R., Ellens H., Sweet R. W., Lambert D. M., Petteway S. R. Jr, Leary J., Bugelski P. J. 1991; Binding of soluble CD4 proteins to human immunodeficiency virus type 1 and infected cells induces release of envelope glycoprotein gpl20. Proceedings of the National Academy of Sciences, USA 88:2189–2193
    [Google Scholar]
  17. Ho D. D., Fung M. S. C., Cao Y. Z., Li X. L., Sun C., Chang T. W., Sun N. C. 1991; Another discontinuous epitope on glycoprotein gpl20 that is important in human immunodeficiency virus type-1 neutralization is identified by a monoclonal antibody. Proceedings of the National Academy of Sciences, USA 88:8949–8952
    [Google Scholar]
  18. Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. 1991; Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253:71–74
    [Google Scholar]
  19. Koito A., Harrowe G., Levy J. A., Cheng-Mayer C. 1994; Functional role of the V1/V2 region of human immunodeficiency virus type 1 envelope glycoprotein gpl20 in infection of primary macrophages and soluble CD4 neutralization. Journal of Virology 68:2253–2259
    [Google Scholar]
  20. Lamers S. L., Sleasman J. W., She J. X., Barrie K. A., Pomeroy S. M., Barrett D. J., Goodenow M. M. 1993; Independent variation and positive selection in env V1 and V2 domains within maternal-infant strains of human immunodeficiency virus type 1 in vivo. Journal of Virology 67:3951–3960
    [Google Scholar]
  21. Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. 1990; Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immundeficiency virus envelope glycoprotein (gpl20) expressed in Chinese hamster ovary cells. Journal of Biological Chemistry 265:10373–10382
    [Google Scholar]
  22. Lifson J. D., Feinberg M. B., Reyes G. R., Rabin L., Banapour B., Chakrabarti S., Moss B., Wong Staal F., Steimer K. S., Engleman E. G. 1986a; Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323:725–728
    [Google Scholar]
  23. Lifson J. D., Reyes G. R., McGrath M. S., Stein B. S., Engleman E. G. 1986b; AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232:1123–1126
    [Google Scholar]
  24. McKeating J. A., Shotton C., Cordell J., Graham S., Balfe P., Sullivan N., Charles M., Page M., Bolmstedt A., Olofsson S., Kayman S. C., Wu Z., Pinter A., Dean C., Sodroski J., Weiss R. A. 1993; Characterization of neutralizing monoclonal antibodies to linear and conformation-dependent epitopes within the first and second variable domains of human immunodeficiency virus type 1 gpl20. Journal of Virology 67:4932–4944
    [Google Scholar]
  25. Moore J. P., McKeating J. A., Weiss R. A., Sattentau Q. J. 1990; Dissociation of gpl20 from HIV-1 virions induced by soluble CD4. Science 250:1139–1142
    [Google Scholar]
  26. Moore J. P., Sattentau Q. J., Yoshiyama H., Thali M., Charles M., Sullivan N., Poon S. W., Fung M. S., Traincard F., Pinkus M. 1993; Probing the structure of the V2 domain of human immunodeficiency virus type 1 surface glycoprotein gpl20 with a panel of eight monoclonal antibodies: human immune response to the VI and V2 domains. Journal of Virology 67:6136–6151
    [Google Scholar]
  27. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. 1984; Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre AIDS. Science 224:497–500
    [Google Scholar]
  28. Sattentau Q. J., Moore J. P. 1991; Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. Journal of Experimental Medicine 174:407–415
    [Google Scholar]
  29. Sattentau Q. J., Moore J. P., Vignaux F., Traincard F., Poignard P. 1993; Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. Journal of Virology 67:7383–7393
    [Google Scholar]
  30. Schutten M., McKnight A., Huisman R. C., Thali M., McKeating J. A., Sodroski J., Goudsmit J., Osterhaus A. D. 1993; Further characterization of an antigenic site of HIV-1 gpl20 recognized by virus neutralizing human monoclonal antibodies. AIDS 7:919–923
    [Google Scholar]
  31. Shioda T., Levy J. A., Cheng Mayer C. 1991; Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gpl20 gene. Nature 349:167–169
    [Google Scholar]
  32. Sodroski J., Goh W. G., Rosen C., Campbell K., Haseltine W. A. 1986; Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322:470–474
    [Google Scholar]
  33. Sullivan N., Thali M., Furman C., Ho D. D., Sodroski J. 1993; Effect of amino acid changes in the VI/V2 region of the human immunodeficiency virus type 1 gpl20 glycoprotein on subunit association, syncytium formation, and recognition by a neutralizing antibody. Journal of Virology 67:3674–3679
    [Google Scholar]
  34. Teeuwsen V. J. P., Slebelink K. H. J., Crush Stanton S., Swerdlow B., Schalken J. J., Goudsmit J., Van DE Akker R., Stukart M. J., Uytdehaag F. G. C. M., Osterhaus A. D. M. E. 1990; Production and characterization of a human monoclonal antibody reactive with a conserved epitope on gp41 of human immunodeficiency virus type 1. AIDS Research and Human Retroviruses 6:381–392
    [Google Scholar]
  35. Westervelt P., Trowbridge D. B., Epstein L. G., Blumberg B. M., Li Y., Hahn B. H., Shaw G. M., Price R. W., Ratner L. 1992; Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo. Journal of Virology 66:2577–2582
    [Google Scholar]
  36. Yoshiyama H., Mo H., Moore J. P., Ho D. D. 1994; Characterization of mutants of human immunodeficiency virus type 1 that have escaped neutralization by a monoclonal antibody to the gpl20 V2 loop. Journal of Virology 68:974–978
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-8-1901
Loading
/content/journal/jgv/10.1099/0022-1317-76-8-1901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error