1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-8-1885
1995-08-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/8/JV0760081885.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-8-1885&mimeType=html&fmt=ahah

References

  1. Atkins J. F., Gesteland R. F. 1995; Discontinuous triplet decoding with or without re-pairing by peptidyl tRNA. In tRNA. Structure, Biosynthesis and Function pp 471–490 Edited by Soli D., RajBhandary U. L. Washington, DC: ASM Press;
    [Google Scholar]
  2. Brault V., Miller W. A. 1992; Translational frameshifting mediated by a viral sequence in plant cells. Proceedings of the National Academy of Sciences, USA 89:2262–2266
    [Google Scholar]
  3. Bredenbeek P. J., Pachuk C. J., Noten A. F. H., Charite J., Luytyes W., Weiss S. R., Spaan W. J. M. 1990; The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Research 18:1825–1832
    [Google Scholar]
  4. Brierley I., Boursnell M. E. G., Binns M. M., Bilimoria B., Blok V. C., Brown T. D. K., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO Journal 6:3779–3785
    [Google Scholar]
  5. Brierley I., Digard P., Inglis S. C. 1989; Characterisation of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547
    [Google Scholar]
  6. Brierley I., Rolley N. J., Jenner A. J., Inglis S. C. 1991; Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. Journal of Molecular Biology 220:889–902
    [Google Scholar]
  7. Brierley I., Jenner A. J., Inglis S. C. 1992; Mutational analysis of the ‘slippery sequence’ component of a coronavirus ribosomal frameshifting signal. Journal of Molecular Biology 227:463–479
    [Google Scholar]
  8. Cassan M., Delaunay N., Vaquero C., Rousset J.-P. 1994; Translational frameshifting at the gagpol junction of human immunodeficiency virus type 1 is not increased in infected T-lymphoid cells. Journal of Virology 68:1501–1508
    [Google Scholar]
  9. Chamorro M., Parkin′ N., Varmus H. E. 1992; An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proceedings of the National Academy of Sciences, USA 89:713–717
    [Google Scholar]
  10. Chandler M., Fayet O. 1993; Translational frameshifting in the control of transposition in bacteria. Molecular Microbiology 7:497–503
    [Google Scholar]
  11. Chen X., Chamorro M., Lee S. I., Shen L. X., Hines J. V., Tinoco I. Jr, Varmus H. E. 1995; Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO Journal 14:842–852
    [Google Scholar]
  12. Condron B. G., Atkins J. F., Gesteland R. F. 1991a; Frameshifting in gene 10 of bacteriophage T7. Journal of Bacteriology 173:6998–7003
    [Google Scholar]
  13. Condron B. G., Gesteland R. F., Atkins J. F. 1991b; An analysis of sequences stimulating frameshifting in the decoding of gene 10 of bacteriophage T7. Nucleic Acids Research 19:5607–5612
    [Google Scholar]
  14. Den Boon J. A., Snijder E. J., Chirnside E. D., de Vries A. A. F., Horzinek M. C., Spaan W. J. M. 1991; Equine arteritis virus is not a togavirus, but belongs to the coronaviruslike superfamily. Journal of Virology 65:2910–2920
    [Google Scholar]
  15. Diamond M. E., Dowhanick J. J., Nemeroff M. E., Pietras D. F., Tu C. L., Bruenn J. A. 1989; Overlapping genes in a yeast double-stranded RNA virus. Journal of Virology 63:3983–3990
    [Google Scholar]
  16. Dinman J. D., Wickner R. B. 1992; Ribosomal frameshifting efficiency and gag/gagpol ratio are critical for yeast M1 doublestranded RNA virus propagation. Journal of Virology 66:3669–3676
    [Google Scholar]
  17. Dinman J. D., Wickner R. B. 1994; Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered − 1 ribosomal frameshifting efficiencies. Genetics 136:75–86
    [Google Scholar]
  18. Dinman J. D., Icho T., Wickner R. B. 1991; A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a Gag–Pol fusion protein. Proceedings of the National Academy of Sciences, USA 88:174–178
    [Google Scholar]
  19. Eleouet J.-F., Rasschaert D., Lambert P., Levy L., Vende P., Laude H. 1995; Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206:817–822
    [Google Scholar]
  20. Falk H., Mador N., Udi R., Panet A., Honigman A. 1993; Two cis-acting signals control ribosomal frameshift between human T-cell leukemia virus type II gag and pro genes. Journal of Virology 67:6273–6277
    [Google Scholar]
  21. Farabaugh P. J. 1993; Alternative readings of the genetic code. Cell 74:591–596
    [Google Scholar]
  22. Felsenstein K. M., Goff S. P. 1988; Expression of the GagPol fusion protein of Moloney murine leukemia virus without Gag protein does not induce virion formation or proteolytic processing. Journal of Virology 62:2179–2182
    [Google Scholar]
  23. Fujimura T., Wickner R. B. 1988; Gene overlap results in a viral protein having an RNA binding domain and a major coat protein domain. Cell 55:663–671
    [Google Scholar]
  24. Fujimura T., Ribas J. C., Makhov A. M., Wickner R. B. 1992; Pol of Gag–Pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature 359:746–749
    [Google Scholar]
  25. Garcia A., van Duin J., Pleij C. W. A. 1993; Differential response to frameshift signals in eukaryotic and prokaryotic translational systems. Nucleic Acids Research 21:401–106
    [Google Scholar]
  26. Gesteland R. F., Weiss R. B., Atkins J. F. 1992; Recoding: reprogrammed genetic decoding. Science 257:1640–1641
    [Google Scholar]
  27. Hatfield D., Feng Y.-X., Lee B. J., Rein A., Levin J. G., Oroszlan S. 1989; Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-I and BLV. Virology 173:736–742
    [Google Scholar]
  28. Hatfield D., Levin J. G., Rein A., Oroszlan S. 1992; Translational suppression in retroviral gene expression. Advances in Virus Research 41:193–239
    [Google Scholar]
  29. Herold J., Siddell S. G. 1993; An ‘elaborated’ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Research 21:5838–5842
    [Google Scholar]
  30. Herold J., Raabe T., Schelle-Prinz B., Siddell S. G. 1993; Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195:680–691
    [Google Scholar]
  31. Hizi A., Henderson L. E., Copeland T. D., Sowder R. C., Hixson C. V., Oroszlan S. 1987; Characterization of mouse mammary tumor virus gag-pro gene products and the ribosomal frameshift site by protein sequencing. Proceedings of the National Academy of Sciences, USA 84:7041–7045
    [Google Scholar]
  32. Hwang C. B. C., Horsburgh B., Pelosi E., Roberts S., Digard P., Cohen D. M. 1994; A net+1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant. Proceedings of the National Academy of Sciences, USA 91:5461–5465
    [Google Scholar]
  33. Jacks T., Varmus H. E. 1985; Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:1237–1242
    [Google Scholar]
  34. Jacks T., Townsley K., Varmus H. E., Majors J. 1987; Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus Gag-related polyproteins. Proceedings of the National Academy of Sciences, USA 84:4298–1302
    [Google Scholar]
  35. Jacks T., Madhani H. D., Masiarz F. R., Varmus H. E. 1988a; Signals for ribosomal frameshifting in the Rous sarcoma virus gagpol region. Cell 55:447–158
    [Google Scholar]
  36. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988b; Characterisation of ribosomal frameshifting in HIV-1 gagpol expression. Nature 331:280–283
    [Google Scholar]
  37. Kim K. H., Lommel S. A. 1994; Identification and analysis of the site of −1 ribosomal frameshifting in red clover necrotic mosaic virus. Virology 200:574–582
    [Google Scholar]
  38. Klausner R. D., Rouault T. A., Harford J. B. 1993; Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28
    [Google Scholar]
  39. Kollmus H., Honigman A., Panet A., Hauser H. 1994; The sequences of and distance between two cis-acting signals determine the efficiency of ribosomal frameshifting in human immunodeficiency virus type 1 and human T-cell leukemia virus type II in vivo. Journal of Virology 68:6087–6091
    [Google Scholar]
  40. Kujawa A. B., Drugeon G., Hulanicka D., Haenni A.-L. 1993; Structural requirements for efficient translational frame-shifting in the synthesis of the putative viral RNA-dependent RNA polymerase of potato leafroll virus. Nucleic Acids Research 21:2165–2171
    [Google Scholar]
  41. Kurland C. G. 1992; Translational accuracy and the fitness of bacteria. Annual Review of Genetics 26:29–50
    [Google Scholar]
  42. Levin M. E., Hendrix R. W., Casjens S. R. 1993; A programmed translational frameshift is required for the synthesis of a bacteriophage X tail assembly protein. Journal of Molecular Biology 234:124–139
    [Google Scholar]
  43. Mador N., Panet A., Honigman A. 1989; Translation of gag, pro and pol gene products of human T-cell leukemia virus type 2. Journal of Virology 63:2400–2404
    [Google Scholar]
  44. Marczinke B., Bloys A. J., Brown T. D. K., Willcocks M. M., Carter M. J., Brierley I. 1994; The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting. Journal of Virology 68:5588–5595
    [Google Scholar]
  45. Matsufuji S., Matsufuji T., Miyazaki Y., Murakami Y., Atkins J. F., Gesteland R. F., Hayashi S.-I. 1995; Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60
    [Google Scholar]
  46. Moore R., Dixon M., Smith R., Peters G., Dickson C. 1987; Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events required for translation of gag and pol . Journal of Virology 61:480–490
    [Google Scholar]
  47. Morikawa S., Bishop D. H. L. 1992; Identification and analysis of the gagpol ribosomal frameshift site of feline immunodeficiency virus. Virology 186:389–397
    [Google Scholar]
  48. Nam S. H., Kidokoro M., Shida H., Hatanaka M. 1988; Processing of Gag precursor polyprotein of human T-cell leukemia type 1 by virus-encoded protease. Journal of Virology 62:3718–3728
    [Google Scholar]
  49. Nam S. H., Copeland T. D., Hatanaka M., Oroszlan S. 1993; Characterization of ribosomal frameshifting for expression of pol gene products of human T-cell leukemia virus type I. Journal of Virology 67:196–203
    [Google Scholar]
  50. Pande S., Vimaladithan A., Zhao H., Farabaugh P. J. 1995; Pulling the ribosome out of frame by +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Molecular and Cellular Biology 15:298–304
    [Google Scholar]
  51. Park J., Morrow C. D. 1991; Overexpression of the Gag–Pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. Journal of Virology 65:5111–5117
    [Google Scholar]
  52. Parkin N. T., Chamorro M., Varmus H. E. 1992; Human immunodeficiency virus type 1 gagpol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. Journal of Virology 66:5147–5151
    [Google Scholar]
  53. Prüfer D., Tacke E., Schmitz J., Kull B., Kaufmann A., Rohde W. 1992; Ribosomal frameshifting in plants: a novel signal directs the − 1 frameshift in the synthesis of the putative viral replicase of potato leafroll luteovirus. EMBO Journal 11:1111–1117
    [Google Scholar]
  54. Reil H., Hoxter M., Moosmayer D., Pauli G., Hauser H. 1994; CD4 expressing human 293 cells as a tool for studies in HIV-1 replication: the efficiency of translational frameshifting is not altered by HIV-1 infection. Virology 205:371–375
    [Google Scholar]
  55. Rohde W., Gramstat A., Schmitz J., Tacke E., Prufer D. 1994; Plant viruses as model systems for the study of non-canonical translation mechanisms in higher plants. Journal of General Virology 75:2141–2149
    [Google Scholar]
  56. Rom E., Kahana C. 1994; Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frameshifting. Proceedings of the National Academy of Sciences, USA 91:3959–3963
    [Google Scholar]
  57. Snijder E. J., den Boon J. A., Bredenbeek P. J., Horzinbk M. C., Rijnbrand R., Spaan W. J. M. 1990; The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that the toro- and coronaviruses are evolutionarily related. Nucleic Acids Research 18:4535–4542
    [Google Scholar]
  58. Somogyi P., Jenner A. J., Brierley I., Inglis S. C. 1993; Ribosomal pausing during translation of an RNA pseudoknot. Molecular and Cellular Biology 13:6931–6940
    [Google Scholar]
  59. ten Dam E. B., Pleij C. W. A., Bosch L. 1990; RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes 4:121–136
    [Google Scholar]
  60. ten Dam E., Pled K., Draper D. 1992; Structural and functional aspects of RNA pseudoknots. Biochemistry 31:11665–11676
    [Google Scholar]
  61. ten Dam E., Brierley I., Inglis S. C., Pleij C. 1994; Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. Nucleic Acids Research 22:2304–2310
    [Google Scholar]
  62. ten Dam E., Verlaan P., Pleij C. 1995; Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions. RNA 1:146–154 (in press)
    [Google Scholar]
  63. Tsuchihashi Z., Brown P. O. 1992; Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNALysand an AAG lysine codon. Genes and Development 6:511–519
    [Google Scholar]
  64. Tu C., Tzeng T.-H., Briinn J. A. 1992; Ribosomal movement impeded at a pseudoknot required for frameshifting. Proceedings of the National Academy of Sciences, USA 89:8636–8640
    [Google Scholar]
  65. Tzeng T.-H., Tu C.-L., Bruenn J. A. 1992; Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus. Journal of Virology 66:999–1006
    [Google Scholar]
  66. Van Der Most R. G., Bredenbeek P. J., Spaan W. J. 1991; A domain at the 3′ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. Journal of Virology 65:3219–3226
    [Google Scholar]
  67. Vickers T. A., Ecker D. J. 1992; Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gagpol region. Nucleic Acids Research 20:3945–3953
    [Google Scholar]
  68. Wang A. L., Yang H.-M., Shen K. A., Wang C. C. 1993; Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a Gag–Pol-like fusion protein by a translation frameshift. Proceedings of the National Academy of Sciences, USA 90:8595–8599
    [Google Scholar]
  69. Xiong Z., Kim K. H., Kendall T. L., Lommel S. A. 1993; Synthesis of the putative red clover necrotic mosaic virus RNA polymerase by ribosomal frameshifting in vitro . Virology 193:213–221
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-8-1885
Loading
/content/journal/jgv/10.1099/0022-1317-76-8-1885
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error