Single amino acid substitutions in the glycoprotein B carboxy terminus influence the fusion from without property of herpes simplex virus type 1 Free

Abstract

Syncytial mutations of herpes simplex virus type 1 (HSV-1) strains ANG, ANG path, HFEM, tsB5 and HSZP cause extensive cell fusion and were mapped to the cytoplasmic domain of glycoprotein B (gB), within the syn 3 locus. These strains are so far the only ones which show the phenotype ‘fusion from without’ (FFWO): 60 min after infection with high m.o.i., cells in a tissue culture are fused without transcription and translation of the viral genome. In this report we detected, using the recombinants 27/III and K-7, that an amino acid exchange from Ala to Val at aa position 854 of gB is the main determinant for FFWO activity of strains ANG, ANG path and recombinant K-7. The transfer of this mutation to wild-type strains KOS and 17 syn by co-transfection results in recombinants KOS-854Q, 17-syn3, 17-syn3a and 17-syn3b. As a selection marker we used the cyclosporin A resistance of fusion which was shown to be a unique characteristic of syn 3 locus mutants. The recombinants show the FFWO phenotype in BHK cells but not in Vero cells. FFWO was shown to be cell-type dependent by comparing the number of p.f.u. needed to induce FFWO in various cell types.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-7-1843
1995-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/7/JV0760071843.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-7-1843&mimeType=html&fmt=ahah

References

  1. Baghian A., Huang L., Newman S., Jayachandra S., Kou-soulas S. 1993; Truncation of the carboxy-terminal 28 amino acids of glycoprotein B specified by herpes simplex virus type 1 mutant amb 1511–7 causes extensive cell fusion. Journal of Virology 67:2396–2401
    [Google Scholar]
  2. Bzik D. J., Fox B. A., Deluca N. A., Person S. 1984a; Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. Virology 133:301–314
    [Google Scholar]
  3. Bzik D. J., Fox B. A., Deluca N. A., Person S. 1984b; Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology 137:185–190
    [Google Scholar]
  4. Cai W., Person S., Debroy C., Gu B. 1988a; Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. Journal of Molecular Biology 201:575–588
    [Google Scholar]
  5. Cai W., Gu B., Person S. 1988b; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  6. Engel J. P., Boyer E. P., Goodman J. L. 1993; Two novel single amino acid syncytial mutations in the carboxy terminus of glycoprotein B of herpes simplex virus type 1 confer a unique pathogenic phenotype. Virology 192:112–120
    [Google Scholar]
  7. Falke D., Knoblich A., Müller S. 1985; Fusion from without induced by herpes simplex virus type 1. Intervirology 24:211–219
    [Google Scholar]
  8. Gage P. J., Levine M., Glorioso J. C. 1993; Syncytium-inducing mutations localize to two discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B. Journal of Virology 67:2191–2201
    [Google Scholar]
  9. Graham F. L., Van der eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  10. Guan J. L., Ruusala A., Cao H., Rose J. K. 1988; Effects of altered cytoplasmic domains on transport of the vesicular stomatitis virus glycoprotein are transferable to other proteins. Molecular and Cellular Biology 8:2869–2874
    [Google Scholar]
  11. Holland T. C., Person S. 1977; Ammonium chloride inhibits cell fusion induced by syn mutants of herpes simplex virus type 1. Journal of Virology 23:213–215
    [Google Scholar]
  12. Holland T. C., Sandri-goldin R. M., Holland L. E., Martin S. D., Levine M., Glorioso J. C. 1983; Physical mapping of the mutation in an antigenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay. Journal of Virology 46:649–652
    [Google Scholar]
  13. Kaerner H. C., Schröder C. H., Ott-hartmann A., Kumel G., Kirchner H. 1983; Genetic variability of herpes simplex virus: development of a pathogenic variant during passaging of a nonpathogenic HSV type 1 strain in mouse brain. Journal of Virology 46:83–93
    [Google Scholar]
  14. Mcgeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., Mcnab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  15. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  16. Pellet P. E., Kousoulas K. G., Pereira L., Roizman B. 1985; Anatomy of herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of wild type and monoclonal antibody-resistant mutants. Journal of Virology 53:243–253
    [Google Scholar]
  17. Pereira L. 1994; Function of glycoprotein B homologues of the family Herpesviridae. Infectious Agents and Disease 3:9–28
    [Google Scholar]
  18. Ruyechan W. T., Morse L. S., Knipe D. M., Roizman B. 1979; Molecular genetics of herpes simplex virus. II. Mapping of the major viral glycoproteins and of the genetic loci specifying the social behavior of infected cells. Journal of Virology 29:677–697
    [Google Scholar]
  19. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Schröder C. H., Stegmann B., Lauppe H. F., Kaerner H. C. 1976; An unusual defective genotype derived from herpes simplex virus ANG. Intervirology 6:270–284
    [Google Scholar]
  21. Seck T., Lingen M., Weise K., Falke D. 1994; Evidence for a multistep mechanism for cell-cell fusion by herpes simplex virus with mutations in the syn 3 locus using heparin derivates during fusion from within. Archives of Virology 136:173–181
    [Google Scholar]
  22. Spear P. G. 1993; Membrane fusion induced by herpes simplex virus. In Viral Fusion Mechanisms pp 201–232 Edited by Bentz J. Boca Raton: CRC Press;
    [Google Scholar]
  23. Subak-sharpe J. H., Brown S. M., Ritchie D. A., Timbury M. C., Macnab J. C. M., Marsden H. S., Hay J. 1974; Genetic and biochemical studies with herpesvirus. Cold Spring Harbor Symposia in Quantitative Biology 39:717–730
    [Google Scholar]
  24. Walev I., Weise K., Falke D. 1991a; Differentiation of herpes simplex virus-induced fusion from without and fusion from within by cyclosporin A and compound 48/80. Journal of General Virology 72:1377–1382
    [Google Scholar]
  25. Walev I., Wollert K. C., Weise K., Falke D. 1991b; Characterisation of fusion from without induced by herpes simplex virus. Archives of Virology 117:29–44
    [Google Scholar]
  26. Walev I., Lingen M., Lazzaro M., Weise K., Falke D. 1994; Cyclosporin A resistance of herpes simplex virus-induced fusion from within ‘as a phenotypical marker of mutations in the Syn 3 locus of the glycoprotein B gene’. Virus Genes 8:83–86
    [Google Scholar]
  27. Weise K., Kaerner H. C., Glorioso J., Schroder C. H. 1987; Replacement of glycoprotein B gene sequences in herpes simplex virus type 1 strain ANG by corresponding sequences of strain KOS causes changes in plaque morphology and neuropathogenicity. Journal of General Virology 68:1909–1919
    [Google Scholar]
  28. Wollert K., Fleck M., Podlech J., Weise K., Corell A., Falke D. 1992; Vaginal infection of mice with HSV type 2 variant ER: a new animal model for human primary genital HSV type 2 infections. Journal of Virological Methods 36265–276
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-7-1843
Loading
/content/journal/jgv/10.1099/0022-1317-76-7-1843
Loading

Data & Media loading...

Most cited Most Cited RSS feed