1887

Abstract

Although the guinea-pig cytomegalovirus (GPCMV) displays a similar pathogenesis to human cytomegalovirus (HCMV), there have unfortunately been few molecular analyses of the GPCMV genome to date. The guinea-pig has proved useful for the testing of drugs active against CMV infection, and insights derived from characterization of the specific virally encoded molecular targets of antiviral therapies would allow this model system to be more fully developed. Because the DNA polymerase serves as an important target for nucleoside antiviral agents active against herpesviruses, experiments were undertaken to identify, clone and sequence the GPCMV DNA polymerase gene (). A 3285 bp ORF capable of encoding a 1094 amino acid protein was identified spanning portions of the dIII Q and P fragments of the genome. This ORF contained extensive homology to other herpesvirus DNA genes. Northern blot analyses identified two 3′ coterminal -specific mRNAs of 3.9 and 1.9 kb at early times post-infection. Primer extension and nuclease protection analyses mapped the 5′ end of the 3.9 kb transcript to a site 275 bases upstream of the initiation codon. Comparison of the GPCMV -encoded sequence to those of other herpesvirus polymerases identified non-conservative amino acid substitutions in a domain involved in substrate recognition.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-7-1827
1995-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/7/JV0760071827.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-7-1827&mimeType=html&fmt=ahah

References

  1. Agulnick A. D., Thompson J. R., Ricciardi R. P. 1994; An ATF/CREB site is the major regulatory element in the human herpesvirus 6 DNA polymerase promoter. Journal of Virology 68:2970–2977
    [Google Scholar]
  2. Alford C. A., Britt W. J. 1990; Cytomegalovirus. In Virology pp 1981–2977 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  3. Bia F. J., Griffith B. P., Fong C. K. Y., Hsuing G. D. 1983; Cytomegalovirus infections in the guinea pig: experimental models for human disease. Reviews of Infectious Diseases 5:177–195
    [Google Scholar]
  4. Drew W. L., Miner R. C., Busch D. F., Follansbee S. E., Gullett J., Mehalko S. G., Gordon S. M., Owen W. F., Matthews T. R., Buhles W. C., Dearmond B. 1991; Prevalence of resistance in patients receiving ganciclovir for serious cytomegalovirus infection. Journal of Infectious Diseases 163:716–719
    [Google Scholar]
  5. Elliott R., Clark C., Jaquish D., Spector D. H. 1991; Transcription analysis and sequence of the putative murine cytomegalovirus DNA polymerase gene. Virology 185:169–186
    [Google Scholar]
  6. Field A. K., Biron K. K. 1994; ‘The end of innocence’ revisited: resistance of herpesviruses to antiviral drugs. Clinical Microbiology Reviews 7:1–13
    [Google Scholar]
  7. Fong C. K. Y., Cohen S. D., Mccormick S., Hsuing G. D. 1987; Antiviral effect of 9-(l, 3-dihydoxy-2-propoxymethyl)guanine against cytomeglovirus infection in a guinea pig model. Antiviral Research 7:11–23
    [Google Scholar]
  8. Gao M., Isom H. C. 1984; Characterization of the guinea pig cytomegalovirus genome by molecular cloning and physical mapping. Journal of Virology 52:436–447
    [Google Scholar]
  9. Geballe A. P., Mocarski E. S. 1988; Translational control of cytomegalovirus gene expression is mediated by upstream AUG codons. Journal of Virology 62:3334–3340
    [Google Scholar]
  10. Gibbs J. S., Chiou H. C., Bastow K. F., Cheng Y. C., Coen D. M. 1988; Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proceedings of the National Academy of Sciences, USA 85:6672–6676
    [Google Scholar]
  11. Goins W. F., Stinski M. F. 1986; Expression of a human cytomegalovirus late gene is posttranscriptionally regulated by a 3′-end-processing event occurring exclusively late after infection. Molecular and Cellular Biology 6:4202–4213
    [Google Scholar]
  12. Griffith B. P., Aquino-de jesus M. J. C. 1991; Guinea pig model of congenital cytomegalovirus infection. Transplantation Procedings 23:29–31
    [Google Scholar]
  13. Heilbron R., Jahn G., Burkle A., Fresse U.-K., Fleckenstein B., Zur Hausen H. 1987; Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene. Journal of Virology 61:119–124
    [Google Scholar]
  14. Hwang C. B. C., Ruffner K. L., Coen D. M. 1992; A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance. Journal of Virology 66:1774–1776
    [Google Scholar]
  15. Johnson K. P. 1969; Mouse cytomegalovirus: placental infection. Journal of Infectious Diseases 120:445–150
    [Google Scholar]
  16. Kerry J. A., Priddy M. A., Stenberg R. M. 1994; Identification of sequence elements in the human cytomegalovirus DNA polymerase gene promoter required for activation by viral gene products. Journal of Virology 68:4167–4176
    [Google Scholar]
  17. Kouzarides T., Bankier A. T., Satchwell S. C., Weston K., Tomlinson P., Barrell B. G. 1987a; Large-scale rearrangement of homologous regions in the genomes of HCMV and EBV. Virology 157:397–113
    [Google Scholar]
  18. Kouzarides T., Bankier A. T., Satchwell S. S., Weston K., Tomlinson P., Barrell B. G. 1987b; Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene. Journal of Virology 61:125–133
    [Google Scholar]
  19. Laskin O. L., Cederberg D. M., Mills J., Eron L. J., Mildvan D., Spector S. A. 1987; Ganciclovir for the treatment and supression of serious infections caused by cytomegalovirus. American Journal of Medicine 83:201–207
    [Google Scholar]
  20. Lurain N. S., Spafford L. E., Thompson K. D. 1994; Mutation in the UL97 open reading frame of human cytomegalovirus strains resistant to ganciclovir. Journal of Virology 68:4427–4431
    [Google Scholar]
  21. Matthews T., Boehme R. 1988; Antiviral activity and mechanism of action of ganciclovir. Reviews ofInfectious Diseases 10:S490–S494
    [Google Scholar]
  22. Mitchell P. J., Tjian R. 1989; Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378
    [Google Scholar]
  23. Santoro C., Mermod N., Andrews P. C., Tjian R. 1988; A family of human CCAAT-box-binding proteins active in transcription & DNA replication: cloning and expression of multiple cDNAs. Nature 334:218–224
    [Google Scholar]
  24. Schleiss M. R. 1994; Cloning and characterization of the guinea pig cytomegalovirus glycoprotein B gene. Virology 202:173–185
    [Google Scholar]
  25. Shanley J. D., Morningstar J., Jordan M. C. 1985; Inhibition of murine cytomegalovirus lung infection and interstitial pneumonitis by acyclovir and 9-(l, 3-dihydoxy-2-propoxymethyl)guanine. Antimicrobial Agents and Chemotherapy 28:172–175
    [Google Scholar]
  26. Spector D. H., Klucher K. M., Rabert D. K., Wright D. A. 1990; Human cytomegalovirus early gene expression. Current Topics in Microbiology and Immunology 154:21–45
    [Google Scholar]
  27. Stenberg R. M. 1993; Immediate-early genes of human cytomegalovirus: organization and function. In Molecular Aspects of Human Cytomegalovirus Diseases pp 330–359 Edited by Huang E.-S. Berlin & Heidelberg: Springer–Verlag;
    [Google Scholar]
  28. Sturzl M., Roth W. K. 1990; ‘Run-off’ synthesis and application of defined single-stranded DNA hybridization probes. Analytical Biochemistry 185:164–169
    [Google Scholar]
  29. Yin C.-Y., Gao M., Isom H. C. 1990; Guinea pig cytomegalovirus immediate-early transcription. Journal of Virology 641537–1548
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-7-1827
Loading
/content/journal/jgv/10.1099/0022-1317-76-7-1827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error