1887

Abstract

A type-specific human immunodeficiency virus type 1 (HIV-1)-neutralizing human monoclonal antibody (HuMAb MN215) is described that reacts with the V3 domain of a number of subtype B virus strains. Pepscan analysis indicated that amino acids at both sides of the tip of the V3 loop were involved in the binding of HuMAb MN215. The minimum epitope in a V3 sequence, obtained from the donor from whom the cell line originated, was 9 amino acids long and proved to be located at the C-terminal side of the tip of the loop. In a replacement Pepscan analysis, individual amino acids of the V3 loop important for binding of HuMAb MN215 were identified. Amino acids at positions 15 (H), 16 (I), 17 (G) and 18 (P) were found to be essential for binding of the antibody, whereas changes at positions 19 of G to N, 20 of R to K and 23 of F to L, as well as the addition of a negative charge at the C terminus, improved binding. Thus, amino acids involved in the binding of HuMAb MN215 are primarily located within highly variable regions of the V3 loop. HuMAb MN215 showed a higher affinity for the V3 domain sequences and recombinant envelope glycoproteins derived from non-syncytium-inducing strains than for those derived from syncytium-inducing strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-7-1665
1995-07-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/7/JV0760071665.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-7-1665&mimeType=html&fmt=ahah

References

  1. Andeweg A. C., Groenink M., Leeflang P., De Goede R. E. Y., Osterhaus A. D. M. E., Tersmette M., Bosch M. L. 1992; Genetic and functional analysis of a set of HIV-1 envelope genes obtained from biological clones with varying syncytium inducing capacities. AIDS Research and Human Retroviruses 8:1803–1813
    [Google Scholar]
  2. Andeweg A. C., Leeflang P., Osterhaus A. D. M. E., Bosch M. L. 1993; Both the V2 and V3 regions of the human immunodeficiency virus type 1 surface glycoprotein functionally interact with other envelope regions in syncytium formation. Journal of Virology 67:3232–3239
    [Google Scholar]
  3. Bou-Habib D. C., Roderiquez G., Oravecz T., Berman P. W., Lusso P., Norcross M. A. 1994; Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. Journal of Virology 68:6006–6013
    [Google Scholar]
  4. Chesebro B., Wehrly K., Nishio J., Perryman S. 1992; Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T cell-tropic isolates: definition of critical amino acids involved in cell tropism. Journal of Virology 66:6547–6554
    [Google Scholar]
  5. De Jong J.-J., Goudsmit J., Keulen W., Klaver B., Krone W., Tersmette M., De Ronde A. 1992; Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. Journal of Virology 66:757–765
    [Google Scholar]
  6. Emini E. A., Schleif W. A., Nunberg J. H., Conley A. J., Eda Y., Tokioshi S., Putney S. D., Matsushita S., Cobb K. E., Jett C. M., Eichberg J. W., Murthy K. K. 1992; Prevention of HIV-1 infection in chimpanzees by gpl20 V3 domain-specific monoclonal antibody. Nature 355:728–730
    [Google Scholar]
  7. Epstein L. G., Kuiken C., Blumberg B. M., Hartman S., Sharer L. R., Clement M., Goudsmit J. 1991; HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology 180:583–590
    [Google Scholar]
  8. Fouchier R. A. M., Groenink M., Kootstra N. A., Tersmette M., Huisman H. G., Miedema F., Schuitemaker H. 1992; Phenotype associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gpl20 molecule. Journal of Virology 66:3183–3187
    [Google Scholar]
  9. Foung S. K. H., Perkins S., Raubitsek A., Larrick J., Lizak G., Fishwild D., Engleman E. G., Grumet F. C. 1984; Rescue of human monoclonal antibody production from an EBV-transformed B cell line by fusion to a human-mouse hybridoma. Journal of Immunological Methods 70:83–90
    [Google Scholar]
  10. Freed E. O., Risser R. 1991; Identification of conserved residues in the human immunodeficiency virus type 1 principal neutralizing determinant that are involved in fusion. AIDS Research and Human Retroviruses 7:807–811
    [Google Scholar]
  11. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, USA 81:3998–1002
    [Google Scholar]
  12. Ghiara J. B., Stura E. A., Stanfield R. L., Profy A. T., Wilson I. A. 1994; Crystal structure of the principal neutralizing site of HIV-1. Science 264:82–85
    [Google Scholar]
  13. Gorny M. K., Conley A. J., Karwowska S., Buchbinder A., Xu J.-Y., Emini E. A., Koenig S., Zolla-Pazner S. 1992; Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. Journal of Virology 66:7538–7542
    [Google Scholar]
  14. Gorny M. K., Xu J.-Y., Karwowska S., Buchbinder A., Zolla-Pazner S. 1993; Repertoire of neutralizing human monoclonal antibodies specific for the V3 domain of HIV-1 gpl20. Journal of Immunology 150:635–643
    [Google Scholar]
  15. Goudsmit J., Debouck C., Meloen R. H., Smit L., Barker M., Asher D. M., Wolff A. V., Gibbs C. J., Gajdusek D. C. 1988; Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proceedings of the National Academy of Sciences, USA 85:4478–1482
    [Google Scholar]
  16. Helseth E., Kowalski M., Gabuzda D., Olshevsky U., Haseltine W., Sodroski J. 1990; Rapid complementation assay measuring replicative potential of human immunodeficiency virus type 1 envelope glycoprotein mutants. Journal of Virology 64:2416–2420
    [Google Scholar]
  17. Holley L. H., Goudsmit J., Karplus M. 1991; Prediction of optimal peptide mixtures to induce broadly neutralizing antibodies to human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 88:6800–6804
    [Google Scholar]
  18. Innocenti-Francillard P., Brengel K., Guillon C., Mallet F., Morand P., Gruters R., Seigneurin J.-M. 1994; Blood monocytes infected in vivo by HIV-1 variants with a syncytium-inducing phenotype. AIDS Research and Human Retroviruses 10:683–690
    [Google Scholar]
  19. Kuiken C. L., De Jong J.-J., Baan E., Keulen W., Tersmette M., Goudsmit J. 1992; Evolution of the V3 envelope domain in proviral sequences and isolates of human immunodeficiency virus type 1 during transition of the viral biological phenotype. Journal of Virology 66:4622–1672
    [Google Scholar]
  20. Langedijk J. P. M., Back N. K. T., Durda P. J., Goudsmit J., Meloen R. H. 1991; Neutralizing activity of anti-peptide antibodies against the principal neutralization domain of human immunodeficiency virus type 1. Journal of General Virology 72:2519–2526
    [Google Scholar]
  21. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell N., Shadduck P., Holley H., Karplus M., Bolognesi D. P., Matthews T. J., Emini E. A., Putney S. D. 1990; Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science 249:932–935
    [Google Scholar]
  22. Meyers G., Berzofsky J. A., Korber B., Smiths R. F., Pavlakis G. N. 1992; Human Retroviruses and AIDS. Los Alamos: Los Alamos National Laboratories.
    [Google Scholar]
  23. Moore J. P. 1990; Simple methods for monitoring HIV-1 and HIV-2 gpl20 binding to soluble CD4 by enzyme-linked immunosorbent assay: HIV-2 has a 25-fold lower affinity than HIV-1 for soluble CD4. AIDS 4:297–305
    [Google Scholar]
  24. Moore J. P. 1993; The reactivities of HIV-1+ human sera with solid phase V3 loop peptides can be poor predictors of their reactivities with V3 loops on native gpl20. AIDS Research, and Human Retroviruses 9:209–219
    [Google Scholar]
  25. Ohno T., Terada M., Yoneda Y., Shea K. W., Chambers R. F., Stroka D. M., Nakamura M., Kufe D. W. 1991; A broadly neutralizing monoclonal antibody that recognizes the V3 region of human immunodeficiency virus type 1 glycoprotein gpl20. Proceedings of the National Academy of Sciences, USA 88:10726–10729
    [Google Scholar]
  26. Page M., Vella C., Corcoran T., Dilger P., Ling C., Heath A., Thorpe R. 1992; Restriction of serum antibody reactivity to the V3 neutralizing domain of HIV gpl20 with progression to AIDS. AIDS 6:441–446
    [Google Scholar]
  27. Palker T. J., Clark M. E., Langlois A. J., Matthews T. J., Weinhold K. J., Randall R. R., Bolognesi D. P., Haynes B. F. 1988; Type-specific neutralization of the human immunodeficiency virus with antibodies to env-encoded synthetic peptides. Proceedings of the National Academy of Sciences, USA 85:1932–1936
    [Google Scholar]
  28. Prince A. M., Reesink H., Pascual D., Horowitz B., Hewlett I., Murthy K., Cobb K. E., Eichberg J. W. 1991; Prevention of HIV infection by passive immunization with HIV immunoglobulin. AIDS Research and Human Retroviruses 7:971–973
    [Google Scholar]
  29. Roos M. T. L., Lange J. M. A., Goede R. E. Y., Coutinho R. A., Schellekens P. T. A., Miedema F., Tersmette M. 1992; Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. Journal of Infectious Diseases 165:427–132
    [Google Scholar]
  30. Schutten M., McKnight A., Huisman R. C., Thali M., Mckeating J. A., Sodroski J., Goudsmit J., Osterhaus A. D. M. E. 1993; Further characterization of an antigenic site of HIV-1 gpl20 recognized by virus neutralizing human monoclonal antibodies. AIDS 7:919–923
    [Google Scholar]
  31. Seed B., Sheen J.-Y. 1988; A simple phase-extraction assay for chloramphenicol acetyltransferase activity. Gene 67:271–277
    [Google Scholar]
  32. Teeuwsen V. J. P., Siebelink K. H. J., Crush stanton S., Swerdlow B., Schalken J. J., Goudsmit J., Van den akker R., Stukart M. J., Uytdehaag F. G. C. M., Osterhaus A. D. M. E. 1990; Production and characterization of a human monoclonal antibody reactive with a conserved epitope on gp41 of human immunodeficiency virus type I. AIDS Research and Human Retroviruses 6:381–392
    [Google Scholar]
  33. Watkins B. A., Reitz M. S. >JR, Wilson C. A., Aldrich K., Davis A. E., Robert-guroff M. 1993; Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies. Journal of Virology 67:7493–7500
    [Google Scholar]
  34. Wilmot C. M., Thornton J. M. 1988; Analysis and prediction of the different types of beta-turn in proteins. Journal of Molecular Biology 203:221–232
    [Google Scholar]
  35. Wolfs T. F. W., Zwart G., Barker M., Valk M., Kuiken C. L., Goudsmit J. 1991; Naturally occurring mutations within HIV-1 V3 genomic RNA lead to antigenic variation dependent on a single amino acid substitution. Virology 185:195–205
    [Google Scholar]
  36. Zhang L. Q., Mackenzie P., Cleland A., Holmes E. C., Leigh brown A. J., Simmonds P. 1993; Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. Journal of Virology 67:3345–3356
    [Google Scholar]
  37. Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. 1993; Genotypic and phenotypic characterization of HIV-1 in patients with primary infections. Science 261:1179–1181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-7-1665
Loading
/content/journal/jgv/10.1099/0022-1317-76-7-1665
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error