Comparative studies of bacterially expressed integrase proteins of caprine arthritis-encephalitis virus, maedi-visna virus and human immunodeficiency virus type 1 Free

Abstract

Integrase (IN) proteins mediate an essential step in retroviral life cycles, the integration of reverse-transcribed viral DNA into the host genome. To create tools for direct comparative investigations, hexahistidine-tagged IN proteins of the phylogenetically related lentiviruses caprine arthritis-encephalitis virus (CAEV), maedi-visna virus (MVV) and human immunodeficiency virus type 1 (HIV-1) were expressed in . After purification by affinity chromatography, the active enzymes were compared for their site-specific cleavage, integration and disintegration activities on cognate and non-cognate oligonucleotide substrates. It was found that CAEV IN and MVV IN catalyse both site-specific cleavage and disintegration with high efficiencies, reduced substrate specificities and similar reaction patterns. Comparisons with the respective activities of HIV-1 IN revealed basic functional similarities as well as considerable differences such as more restricted substrate requirements for site-specific cleavage. On the other hand, all three enzymes catalyse disintegration almost independent of the substrate origin. Furthermore, MVV IN was shown to join oligonucleotides as efficiently as HIV-1 IN, albeit with reduced substrate specificity. In contrast, no detectable strand transfer activities occurred with CAEV IN.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-7-1651
1995-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/7/JV0760071651.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-7-1651&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendblman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–291
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  3. Braun M. J., Clements J. E., Gonda M. A. 1987; The visna virus genome: evidence for a hypervariable site in the env gene and sequence homology among lentivirus envelope proteins. Journal of Virology 61:4046–4054
    [Google Scholar]
  4. Brown P. O. 1990; Integration of retroviral DNA. Current Topics in Microbiology and Immunology 157:19–48
    [Google Scholar]
  5. Burke C. J., Sanyal G., Bruner M. W., Ryan J. A., LaFemina R. L., Robbins H. L., Zeft A. S., Middaugh C. R., Cordingley M. G. 1992; Structural implications of spectroscopic characterization of a putative zinc finger peptide from HIV-1 integrase. Journal of Biological Chemistry 267:9639–9644
    [Google Scholar]
  6. Bushman F. D., Craigie R. 1991; Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proceedings of the National Academy of Sciences, USA 88:1339–1343
    [Google Scholar]
  7. Bushman F. D., Wang B. 1994; Rous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding. Journal of Virology 68:2215–2223
    [Google Scholar]
  8. Bushman F. D., Fujiwara T., Craigie R. 1990; Retroviral DNA integration directed by HIV integration protein in vitro. Science 249:1555–1558
    [Google Scholar]
  9. Bushman F. D., Engelman A., Palmer I., Wingfield P., Craigie R. 1993; Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding.. Proceedings of the National Academy of Sciences, USA 90:3428–3432
    [Google Scholar]
  10. Cheevers W. P., McGuire T. C. 1988; The lentiviruses: maedi/ visna, caprine arthritis-encephalitis, and equine infectious anemia. Advances in Virus Research 3:189–215
    [Google Scholar]
  11. Chow S. A., Brown P. O. 1994; Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates. Journal of Virology 68:3896–3907
    [Google Scholar]
  12. Chow S. A., Vincent K. A., Ellison V., Brown P. O. 1992; Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255:723–726
    [Google Scholar]
  13. Craigie R. 1992; Hotspots and warm spots: integration specificity of retroelements. Trends in Genetics 8:187–190
    [Google Scholar]
  14. Craigie R., Fujiwara T., Bushman F. 1990; The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62:829–837
    [Google Scholar]
  15. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  16. Drelich M., Wilhelm R., Mous J. 1992; Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology 188:459–468
    [Google Scholar]
  17. Engelman A., Craigie R. 1992; Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. Journal of Virology 66:6361–6369
    [Google Scholar]
  18. Engelman A., Mizuuchi K., Craigie R. 1991; HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 61:1211–1221
    [Google Scholar]
  19. Engelman A., Bushman F. D., Craigie R. 1993; Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO Journal 12:3269–3275
    [Google Scholar]
  20. Frank R., & Koster H. 1979; DNA chain length markers and the influence of base composition on electrophoretic mobility of oligodeoxyribonucleotides in polyacrylamide-gels.. Nucleic Acids Research 7:2069–2087
    [Google Scholar]
  21. Goff S. P. 1992; Genetics of retroviral integration. Annual Reviews in Genetics 26:527–544
    [Google Scholar]
  22. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  23. Hizi A., Hughes S. H. 1988; Expression of the Moloney murine leukemia vims and human immunodeficiency virus integration proteins in Escherichia coli. Virology 167:634–638
    [Google Scholar]
  24. Holler T. P., Foltin S. K., Ye Q.-Z., Hupe D. J. 1993; HIV1 integrase expressed in Escherichia coli from a synthetic gene. Gene 136:323–328
    [Google Scholar]
  25. Hong T., Murphy E., Groarke J., Drlica K. 1993; Human immunodeficiency virus type 1 DNA integration: fine structure target analysis using synthetic oligonucleotides. Journal of Virology 67:1127–1131
    [Google Scholar]
  26. Kalpana G. V., Goff S. P. 1993; Genetic analysis of homomeric interactions of human immunodeficiency virus type 1 integrase using the yeast two-hybrid system. Proceedings of the National Academy of Sciences, USA 90:10593–10597
    [Google Scholar]
  27. Katz R. A., Merkel G., Kulkosky J., Leis J., Skalka A. M. 1990; The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 6:87–95
    [Google Scholar]
  28. Katzman M., Sudol M. 1994; In vitro activities of purified visna virus integrase. Journal of Virology 68:3558–3569
    [Google Scholar]
  29. Katzman M., Katz R. A., Skalka A. M., Leis J. 1989; The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. Journal of Virology 63:5319–5327
    [Google Scholar]
  30. Khan E., Mack J. P. G., Katz R. A., Kulkosky J., Skalka A. M. 1991; Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Research 19:851–860
    [Google Scholar]
  31. Kulkosky J., Jones K. S., Katz R. A., Mack J. P. G., Skalka M. 1992; Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/ retrotransposon integrases and bacterial insertion sequence trans-posases. Molecular and Cellular Biology 12:2331–2338
    [Google Scholar]
  32. LaFemina R. L., Callahan P. L., Cordingley M. G. 1991; Substrate specificity of recombinant human immunodeficiency virus integrase protein. Journal of Virology 65:5624–5630
    [Google Scholar]
  33. LaFemina R. L., Schneider C. L., Robbins H. L., Callahan P. L., LeGrow K., Roth E., Schleif W. A., Emini E. A. 1992; Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. Journal of Virology 66:7414–7419
    [Google Scholar]
  34. Leavitt A. D., Rose R. B., Varmus H. E. 1992; Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae. Journal of Virology 66:2359–2368
    [Google Scholar]
  35. Maxam A. M., Gilbert W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences, USA 74:560–564
    [Google Scholar]
  36. McEuen A. R., Edwards B., Koepke K. A., Ball A. E., Jennings A., Wolstenholme A. J., Danson M. J., Hough D. W. 1992; Zinc binding by retroviral integrase. Biochemical and Biophysical Research Communications 189:813–818
    [Google Scholar]
  37. Mizuuchi K. 1992; Polynucleotidyl transfer reactions in transpositional DNA recombination. Journal of Biological Chemistry 267:21273–21276
    [Google Scholar]
  38. Murphy J. E., Goff S. P. 1992; A mutation at one end of moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo. Journal of Virology 66:5092–5095
    [Google Scholar]
  39. Narayan O., Zink M. C., Gorrell M., Crane S., Huso D., Jolly P., Saltarelli M., Adams R. J., Clements J. E. 1993; The lentiviruses of sheep and goats. In The Retroviridae vol 2 pp 229–255 Edited by Levy J. A. New York:: Plenum Press.;
    [Google Scholar]
  40. Pahl A., Flugel R. M. 1993; Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. Journal of Virology 67:5426–5434
    [Google Scholar]
  41. Perk K. 1988; Ungulate lentiviruses: pathogenesis and relationship to AIDS. Advances in Veterinary Science and Comparative Medicine 32:97–118
    [Google Scholar]
  42. Sakai H., Kawamura M., Sakuragi J.-I., Sakuragi S., Shibata R., Ishimoto A., Ono N., Ueda S., Adachi A. 1993; Integration is essential for efficient gene expression of human immunodeficiency virus type 1. Journal of Virology 67:1169–1174
    [Google Scholar]
  43. Saltarelli M., Querat G., Konings D. A. M., Vigne R., Clements J. E. 1990; Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179:347–364
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis M. 1989; Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory. Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  45. Schauer M., Billich A. 1992; The N-terminal region of HIV-1 integrase is required for integration activity, but not for DNA-binding. Biochemical and Biophysical Research Communications 185:874–880
    [Google Scholar]
  46. Sherman P. A., Dickson M. L., Fyfe J. A. 1992; Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. Journal of Virology 66:3593–3601
    [Google Scholar]
  47. Van Gent D. C., Oude Groeneger A. A. M., Plasterk R. H. A. 1992; Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proceedings of the National Academy of Sciences, USA 89:9598–9602
    [Google Scholar]
  48. Van Gent D. C., Vink C., Oude Groeneger A. A. M., Plasterk R. H. A. 1993; Complementation between HIV integrase proteins mutated in different domains. EMBO Journal 12:3261–3267
    [Google Scholar]
  49. Vincent K. A., Ellison V., Chow S. A., Brown P. O. 1993; Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. Journal of Virology 67:425–437
    [Google Scholar]
  50. Vink C., Plasterk R. H. A. 1993; The human immunodeficiency virus integrase proteins. Trends in Genetics 9:433–437
    [Google Scholar]
  51. Vink C., Van Gent D. C., Elgersma Y., Plasterk R. H. A. 1991a; Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage. Journal of Virology 65:4636–4644
    [Google Scholar]
  52. Vink C., Yeheskiely E., van der Marel G. A., van Boom J. H., Plasterk R. H. A. 1991b; Site-specific hydrolysis and alcoholysis of human immunodeficiency virus DNA termini mediated by the viral integrase protein. Nucleic Acids Research 19:6691–6698
    [Google Scholar]
  53. Vink C., Oude Groeneger A. A. M., Plasterk R. H. A. 1993; Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type I integrase protein. Nucleic Acids Research 21:1419–1425
    [Google Scholar]
  54. Vink C., van der Linden K. H., Plasterk R. H. A. 1994; Activities of the feline immunodeficiency virus integrase protein produced in Escherichia coli. Journal of Virology 68:1468–1474
    [Google Scholar]
  55. Woerner A. M., Klutch M., Levin J. G., Marcus-Sekura C. J. 1992; Localization of DNA binding activity of HIV-1 integrase to the C-terminal half of the protein. AIDS Research and Human Retroviruses 8:297–304
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-7-1651
Loading
/content/journal/jgv/10.1099/0022-1317-76-7-1651
Loading

Data & Media loading...

Most cited Most Cited RSS feed