1887

Abstract

Herpes simplex virus type 1 (HSV-1) polypeptides specified by overlapping genes UL26 and UL26.5 form a scaffold around which the icosahedral capsid shell is assembled. In a series of cleavage events catalysed by the UL26-encoded protease, the full-length UL26 product is processed into capsid proteins VP24 and VP21 and the UL26.5 protein is converted into the capsid protein VP22a by the loss of 25 amino acids from its carboxy terminus. The roles of the UL26 and UL26.5 products were investigated using the baculovirus expression system, focusing on the function of the 25 residues cleaved from the UL26.5 protein. A key conclusion from electron microscopic analysis and protein expression studies is that the 25 amino acids at the carboxy terminus of the full-length UL26.5 protein are required for the interaction of the capsid shell proteins with the scaffold in the formation of intermediate capsids. When cells were multiply infected with baculoviruses expressing a truncated form of the UL26.5 product corresponding to VP22a and the essential components of the capsid shell, no capsids were detected, whereas large numbers of capsids were observed when the full-length UL26.5 product was used as a scaffold. The results are consistent with the proposal that cleavage of the UL26.5 product occurs after capsid assembly or when the UL26.5 protein is in a complex with one or more capsid shell proteins. Expression of VP22a in the absence or presence of capsid shell proteins resulted in the formation of large numbers of 60 nm scaffold-like particles. Since VP22a expressed from baculovirus was unable to participate in capsid assembly, these particles cannot be intermediates in the capsid assembly pathway but may be similar in structure to the protein cores present in HSV-1 immature (B) capsids.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-7-1611
1995-07-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/7/JV0760071611.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-7-1611&mimeType=html&fmt=ahah

References

  1. Baum E. Z., Beberniz G. A., Hulmes J. D., Muzithras V. P., Jones T. R., Glutzman Y. 1993; Expression and analysis of the human cytomegalovirus UL80-encoded protease: identification of autoproteolytic sites. Journal of Virology 67:497–506
    [Google Scholar]
  2. Booy F. P., Newcomb W. W., Trus B. L., Brown J. C., Baker T. S., Steven A. C. 1991; Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64:1007–1015
    [Google Scholar]
  3. Booy F. P., Trus B. L., Newcomb W. W., Brown J. C., Conway J. F., Steven A. C. 1994; Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proceedings of the National Academy of Sciences, USA 91:5652–5656
    [Google Scholar]
  4. Cohen G. H., Ponce De Leon M., Diggleman H., Lawrence W. C., Vernon S. K., Eisenberg R. J. 1980; Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. Journal of Virology 34:521–531
    [Google Scholar]
  5. Davison M. D., Rixon F. J., Davison A. J. 1992; Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. Journal of General Virology 73:2709–2713
    [Google Scholar]
  6. Desai P., Watkins S. C., Person S. 1994; The size and symmetry of B capsids of herpes simplex virus type 1 are determined by the gene products of the UL26 open reading frame. Journal of Virology 68:5365–5374
    [Google Scholar]
  7. Diianni C. L., Drier D. A., Deckman I. C., McCann P. J. III, Liu F., Roizman B., Colonno R. J., Cordingley M. G. 1993a; Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. Journal of Biological Chemistry 268:2048–2051
    [Google Scholar]
  8. Diianni C. L., Mapelli C., Drier D. A., Tsao J., Natarajan S., Riexinger D., Festin S. M., Bolgar M., Yamanaka G., Weinheimer S. P., Meyers C. A., Colonno R. J., Cordingley M. G. 1993b; In vitro activity of the herpes simplex virus type 1 protease with peptide substrates. Journal of Biological Chemistry 268:25449–25454
    [Google Scholar]
  9. Fuller M. T., King J. 1981; Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. Virology 112:529–547
    [Google Scholar]
  10. Gao M., Matusick-Kumar L., Hurlburt W., Feubr Ditusa S., Newcomb W. W., Brown J. C., McCann P. J. III, Deckman I., Colonno R. J. 1994; The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. Journal of Virology 68:3702–3712
    [Google Scholar]
  11. Gibson W., Roizman B. 1972; Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtypes 1 and 2. Journal of Virology 10:1071–1074
    [Google Scholar]
  12. Gibson W., Marcy A. I., Comolli J. C., Lee J. 1990; Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in the loss of its carboxy-terminal end. Journal of Virology 64:1241–1249
    [Google Scholar]
  13. Heilman C. J., Zeig M., Stephenson J. R., Hampar B. 1979; Isolation of a nucleocapsid polypeptide of herpes simplex virus types 1 and 2 possessing immunologically type-specific and cross-reactive determinants. Journal of Virology 29:34–42
    [Google Scholar]
  14. Kitts P. A., Possee R. D. 1993; A method for producing recombinant baculovirus expression vectors at high frequency. BioTechniques 14:810–817
    [Google Scholar]
  15. Ladin B. F., Blankenship M. I., Ben-Porat T. 1980; Replication of herpesvirus DNA. V. Maturation of concatemeric DNA of pseudorabies virus to genome length is related to capsid formation. Journal of Virology 33:1151–1164
    [Google Scholar]
  16. Liu F., Roizman B. 1991a; The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. Journal of Virology 65:206–212
    [Google Scholar]
  17. Liu F., Roizman B. 1991b; The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. Journal of Virology 65:5149–5156
    [Google Scholar]
  18. Liu F., Roizman B. 1993; Characterization of the protease and other products of the amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. Journal of Virology 67:1300–1309
    [Google Scholar]
  19. McCann P. J. III, O’Boyle D. R. >II, Deckman I. C. 1994; Investigation of the specificity of the herpes simplex virus type 1 protease by point mutagenesis of the autoproteolysis sites. Journal of Virology 68:526–529
    [Google Scholar]
  20. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  21. Matusick-Kumar L., Hurlburt W., Weinheimer S. P., Newcomb W. W., Brown J. C., Gao M. 1994; Phenotype of the herpes simplex virus type I protease substrate ICP35 mutant virus. Journal of Virology 68:53842–5394
    [Google Scholar]
  22. Newcomb W. W., Brown J. C. 1989; Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. Journal of Virology 63:4697–1702
    [Google Scholar]
  23. Newcomb W. W., Brown J. C. 1991; Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. Journal of Virology 65:613–620
    [Google Scholar]
  24. Newcomb W. W., Trus B. L., Booy F. P., Steven A. C., Wall J. S., Brown J. C. 1993; Structure of the herpes simplex virus capsid: molecular composition of the pentons and triplexes. Journal of Molecular Biology 232:499–511
    [Google Scholar]
  25. Nicholson P., Addison C., Cross A. M., Kennard J., Preston V. G., Rixon F. J. 1994; Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. Journal of General Virology 75:1091–1099
    [Google Scholar]
  26. Perdue M. L., Cohen J. C., Randall C. C., O’Callaghan D. L. 1976; Biochemical studies on the maturation of herpesvirus nucleocapsid species. Virology 74:194–208
    [Google Scholar]
  27. Person S., Laquerre S., Desai P., Hempel J. 1993; Herpes simplex virus type 1 capsid protein, VP21, originates within the UL26 open reading frame. Journal of General Virology 74:2269–2273
    [Google Scholar]
  28. Preston V. G., Coates A. J. V, Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of viral DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  29. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., Al-Kobaisi M. F. 1992; Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology 186:87–98
    [Google Scholar]
  30. Preston V. G., Al-Kobaisi M. F., McDougall I. M., Rixon F. J. 1994; The herpes simplex virus gene UL26 proteinase in the presence of the UL26.5 gene product promotes the formation of scaffold-like structures. Journal of General Virology 75:2355–2366
    [Google Scholar]
  31. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  32. Shen Y.-M., Hirschhorn R. R., Mercer W. E., Surmacz E., Tsutsui Y., Soprano K. J., Baserga R. 1982; Gene transfer: DNA microinjection compared with DNA transfection with a very high efficiency. Molecular and Cellular Biology 2:1145–1154
    [Google Scholar]
  33. Sherman G., Bachenheimer S. L. 1988; Characterization of intranuclear capsids made by ts morphogenetic mutants of HSV-1. Virology 163:461–480
    [Google Scholar]
  34. Shrag J. D., Venkataram Prasad B. V., Rixon F. J., Chiu W. 1989; Three-dimensional structure of the HSV-1 nucleocapsid. Cell 56:651–660
    [Google Scholar]
  35. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J. 1994; Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. Journal of General Virology 75:1101–1113
    [Google Scholar]
  36. Thomsen D. R., Roof L. L., Homa F. L. 1994; Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. Journal of Virology 68:2442–2457
    [Google Scholar]
  37. Trus B. L., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. 1992; Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proceedings of the National Academy of Sciences, USA 89:11508–11512
    [Google Scholar]
  38. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. 1976; The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217
    [Google Scholar]
  39. Weinheimer S. P., McCann P. J. III, O’Boyle D. R. II, Stevens J. T., Boyd B. A., Drier D. A., Yamanaka G. A., Diianni C. L., Deckman I. C., Cordingley M. G. 1993; Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. Journal of Virology 67:5813–5822
    [Google Scholar]
  40. Welch A. R., Woods A. S., McNally L. M., Cotter J. R., Gibson W. 1991; A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proceedings for the National Academy of Sciences USA 88:10792–10796
    [Google Scholar]
  41. Welch A. R., McNally L. M., Hall M. R. T., Gibson W. 1993; Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. Journal of Virology 67:7360–7372
    [Google Scholar]
  42. Wildy P., Russell W. C., Horne R. W. 1960; The morphology of herpes virus. Virology 12:204–222
    [Google Scholar]
  43. Zhou Z. H., Prasad B. V. V., Jakana J., Rixon F. J., Chiu W. 1993; Protein subunit structures in the herpes simplex virus A-capsid determined from 400 k/v spot-scan electron cryomicroscopy. Journal of Molecular Biology 242:456–469
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-7-1611
Loading
/content/journal/jgv/10.1099/0022-1317-76-7-1611
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error