1887

Abstract

Monoclonal antibodies (MAbs) raised against a synthetic peptide including residues 156–170 of protein VP2 of human rhinovirus type 2 (HRV2) have previously been shown to be of differing specificities. The basis for these differences has now been examined in greater detail by ELISA, radioimmunoprecipitation and virus neutralization. Reactions with a panel of HRV2 mutant viruses indicated that substitution of some residues could enhance the apparent activity of one of the neutralizing anti-peptide MAbs. For one such substitution, VP2 P164H, there appeared to be a correlation between increased neutralizing activity and enhanced binding. Mapping experiments identified two overlapping neutralization epitopes (amino acids 156–163 and 160–165) and several non-neutralizing epitopes. Although some differences in antibody reactivity were due to epitope specificity alone, the explanation for others was less obvious. Significantly, the majority of MAbs that recognized, and in some cases neutralized, native virus had the same minimum binding sequence and critical residue requirement as others which recognized virus particles only after distortion. This demonstrates that factors other than the linear sequence of the peptide can be crucial in determining the fine specificity, and hence biological relevance, of peptide antigens.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-5-1255
1995-05-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/5/JV0760051255.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-5-1255&mimeType=html&fmt=ahah

References

  1. Al Moudallal Z., Briand J. P., Van Regenmortel M. H. V. 1982; Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus. EMBO Journal 1:1005–1010
    [Google Scholar]
  2. Appleyard G., Russell S. M., Clarke B. E., Speller S. A., Trowbridge M., Vadolas J. 1990; Neutralization epitopes of human rhinovirus type 2. Journal of General Virology 71:1275–1282
    [Google Scholar]
  3. Barnett P. V., Rowlands D. J., Parry N. R. 1993; Characterization of monoclonal antibodies raised against a synthetic peptide capable of inducing a neutralizing response to human rhinovirus type 2. Journal of General Virology 74:1295–1302
    [Google Scholar]
  4. Booth J. C., Rweyemamu M. M., Pay T. W. F. 1978; Dose response relationships in a microneutralization test for foot-and-mouth disease viruses. Journal of Hygiene 80:31–42
    [Google Scholar]
  5. Colonno R. J., Condra J. H., Mizutani S., Callahan P. L., Davies M. E., Murcko M. A. 1988; Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proceedings of the National Academy of Sciences, USA 85:5449–5453
    [Google Scholar]
  6. Cooper H. M., Jemmerson R., Hunt D. F., Griffin P. R., Yates J. R., Shabanowitz J., Zhu N., Paterson Y. 1987; Site-directed chemical modification of horse cytochrome C results in changes in antigenicity due to local and long-range conformational perturbations. Journal of Biological Chemistry 262:11592–11597
    [Google Scholar]
  7. Ferguson M., Reed S. E., Minor P. D. 1986; Reactivity of antipeptide and anti-poliovirus type 3 monoclonal antibodies with synthetic peptides. Journal of General Virology 67:2527–2531
    [Google Scholar]
  8. Francis M. J., Hastings G. Z., Sangar D. V., Clark R. P., Syred A., Clarke B. E., Rowlands D. J., Brown F. 1987; A synthetic peptide which elicits neutralizing antibody against human rhinovirus type 2. Journal of General Virology 68:2687–2691
    [Google Scholar]
  9. Francis M. J., Hastings G. Z., Campbell R. O., Rowlands D. J., Brown F., Peat N. 1989; T-cell help for B-cell antibody production to rhinovirus peptides. In Vaccines 89:Modern Approaches to New Vaccines Including Prevention of AIDS pp 437–444 Edited by Lerner R. A., Ginsberg H. S., Chanock R. M., Brown F. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  10. Houghten R. A. 1985; General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proceedings of the National Academv of Sciences, USA 82:5131–5135
    [Google Scholar]
  11. Ibrahimi I. M., Prager E. M., White T. J., Wilson A. C. 1979; Amino acid sequence of California quail lysozyme: effect of evolutionary substitutions on the antigenic structure of lysozyme. Biochemistry 13:2736–2744
    [Google Scholar]
  12. Kim S., Smith T. J., Chapman M. S., Rossmann M. G., Pevear D. C., Dutko F. J., Felock P. J., Diana G. D., McKinlay M. A. 1989; Crystal structure of human rhinovirus serotype 1A (HRV1A). Journal of Molecular Biology 210:91–111
    [Google Scholar]
  13. Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J. 1991; A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84
    [Google Scholar]
  14. Merrifield R. B. 1963; Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 85:2149–2154
    [Google Scholar]
  15. Parry N. R., Ouldridge E. J., Barnett P. V., Clarke B. E., Francis M. J., Fox J. D., Rowlands D. J., Brown F. 1989; Serological prospects for peptide vaccines against foot-and-mouth disease virus. Journal of General Virology 70:2919–2930
    [Google Scholar]
  16. Parry N., Fox G., Rowlands D., Brown F., Fry E., Acharya R., Logan D., Stuart D. 1990; Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature 347:569–572
    [Google Scholar]
  17. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, London 317:145–153
    [Google Scholar]
  18. Sherry B., Mosser A. G., Colonno R. J., Rueckert R. R. 1986; Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. Journal of Virology 57:246–257
    [Google Scholar]
  19. Skern T., Sommergruber W., Blaas D., Gründler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E. 1985; Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Research 13:2111–2116
    [Google Scholar]
  20. Skern T., Neubauer C., Frasel L., Gründler P., Sommergruber W., Zorn M., Kuechler E., Blaas D. 1987; A neutralizing epitope on human rhinovirus type 2 includes amino acid residues between 153 and 164 of virus capsid protein VP2. Journal of General Virology 68:315–323
    [Google Scholar]
  21. Sperber S. J., Hayden F. G. 1988; Chemotherapy of rhinovirus colds. Antimicrobial Agents and Chemotherapy 32:409–419
    [Google Scholar]
  22. Tormo J., Blaas D., Parry N. R., Rowlands D., Stuart D., Fita I. 1994; Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. EMBO Journal 13:2247–2256
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-5-1255
Loading
/content/journal/jgv/10.1099/0022-1317-76-5-1255
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error