1887

Abstract

The nucleotide sequence encoding the C terminus of the nucleocapsid protein of measles virus (MV) is the most variable in the genome. The sequence of this region is reported for 21 new MV strains and for virus RNA obtained from cases of subacute panencephalitis (SSPE) tissue. The nucleotide sequence of a total of 65 MV strains has been analysed using the CLUSTAL program to determine the relationships between the strains. An unrooted tree shows that eight different genotypes can be discerned amongst the sequences analysed so far. The data show that the C-terminal coding sequence of the nucleocapsid gene, although highly variable between strains, is stable in a given strain and does not appear to diverge in tissue culture. It therefore provides a good ‘signature’ sequence for specific genotypes. The sequence of this region can be used to discriminate new imported viruses from old ‘endemic’ strains of MV in a geographical area. The different genotypes are not geographically restricted although some appear to be the mainly ‘endemic’ types in large areas of the world. In global terms there appears to be at least four cocirculating genotypes of MV. The low level of divergence in the Edmonston lineage group isolated before 1970 indicates that some isolates are probably laboratory contaminants. This applies to some SSPE isolates such as the Hallé, Mantooth and Horta-Barbosa strains as well as some wild-type isolates from that period.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-5-1173
1995-05-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/5/JV0760051173.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-5-1173&mimeType=html&fmt=ahah

References

  1. Baczko K., Carter M. J., Billeter M., ter Meulen V. 1984; Measles virus gene expression in subacute sclerosing panencephalitis. Virus Research 1:589–595
    [Google Scholar]
  2. Baczko K., Brinckmann U., Pardowitz I., Rima B. K., ter Meulen V. 1991; Nucleotide sequence of the genes encoding the matrix protein of two wild-type measles virus strains. Journal of General Virology 72:2279–2282
    [Google Scholar]
  3. Baczko K., Pardowitz I., Rima B. K., ter Meulen V. 1992; Constraint and variable regions of measles virus proteins encoded by the nucleocapsid and phosphoprotein genes derived from lytic and persistent viruses. Virology 190:469–174
    [Google Scholar]
  4. Barrett T., Subbarao S. M., Belsham G. J., Mahy B. W. J. 1991; The molecular biology of the morbilliviruses. In The Paramyxoviruses pp 83–102 Edited by Kingsbury D. W. New York and London: Plenum Press;
    [Google Scholar]
  5. Bellini W. J., Englund G., Rozenblatt S., Arnheiter H., Richardson C. D. 1985; Measles virus P gene codes for two proteins. Journal of Virology 53:908–919
    [Google Scholar]
  6. Bergholz C. M., Kiley M. P., Payne F. E. 1975; Isolation and characterization of temperature-sensitive mutants of measles virus. Journal of Virology 16:192–202
    [Google Scholar]
  7. Buckland R., Gerald C., Barker D., Wild T. F. 1988; Cloning and sequencing of the nucleoprotein of measles virus (Halle) strain. Nucleic Acids Research 16:1821
    [Google Scholar]
  8. Carrigan D. 1986; Round cell variant of measles virus: neurovirulence and pathogenesis of acute encephalitis in newborn hamsters. Virology 148:349–359
    [Google Scholar]
  9. Cattaneo R., Kaelin K., Baczko K., Billeter M. A. 1989a; Measles virus editing provides an additional cysteine rich protein. Cell 56:759–764
    [Google Scholar]
  10. Cattaneo R., Schmid A., Spielhofer P., Kaelin K., Baczko K., ter Meulen V., Pardowitz I., Flanagan S., Rima B. K., Udem S. A., Billeter M. A. 1989b; Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology 173:415–425
    [Google Scholar]
  11. Crowley J. C., Dowling P. C., Menonna J., Silverman J. I., Schuback D., Cook S. D., Blumberg B. M. 1988; Sequence variability and function of measles virus 3′ and 5′ ends and intercistronic regions. Virology 164:498–506
    [Google Scholar]
  12. Gould E. A., Cosby S. L., Shirodaria P. V. 1976; Salt-dependent haemagglutinating measles virus in SSPE. Journal of General Virology 33:139–142
    [Google Scholar]
  13. Haspel M. V., Duff R., Rapp F. 1975; Isolation and preliminary characterization of temperature-sensitive mutants of measles virus. Journal of Virology 16:1000–1019
    [Google Scholar]
  14. Higgins D. G., Sharp P. M. 1988; CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  15. Komase K., Rima B. K., Pardowitz I., Kunz C., Billeter M. A., ter Meulen V., Baczko K. 1995; A comparison of nucleotide sequences of measles virus L genes derived from wild type viruses and SSPE brain tissues. Virology (in press)
    [Google Scholar]
  16. McKimm J., Rapp F. 1977; Variation in ability of measles virus plaque progeny to induce interferon. Proceedings of the National Academy of Sciences, USA 74:3056–3059
    [Google Scholar]
  17. Mori T., Sasaki H., Hashimoto H., Makino S. 1993; Molecular cloning and complete nucleotide sequence of genomic RNA of the AIK-C strain of attenuated measles virus. Virus Genes 7:67–81
    [Google Scholar]
  18. Rapp F. 1964; Plaque differentiation and replication of virulent and attenuated strains of measles virus. Journal of Bacteriology 88:1448–1458
    [Google Scholar]
  19. Rima B. K. 1989; Comparison of amino acid sequences of the major structural proteins of the paramyxo- and morbilliviruses. In Genetics and Pathogenicity of Negative Strand Viruses Edited by Kolakofsky D., Mahy B. W. J. Amsterdam: Elsevier;
    [Google Scholar]
  20. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of wild-type strains of measles virus isolated from recent epidemics. Virology 188:135–142
    [Google Scholar]
  21. Rota J. S., Wang Z.-D., Rota P. A., Bellini W. J. 1994a; Comparison of sequences of the H, F and N coding genes of measles virus vaccine strains. Virus Research 31:317–330
    [Google Scholar]
  22. Rota P. A., Bloom A. E., Vanchiere J. A., Bellini W. J. 1994b; Evolution of the nucleoprotein and matrix genes of wild-type strains of measles virus isolated from recent epidemics. Virology 198:724–730
    [Google Scholar]
  23. Rozenblatt S., Eizenberg O., Ben-Levy R., La vie V., Bellini W. J. 1985; Sequence homology within the morbilliviruses. Journal of Virology 53:684–690
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  25. Schulz T. F., Hoad J. G., Whitby D., Tizard E. J., Dillon M. J., Weis R. A. 1992; A measles isolate from a child with Kawasaki disease: sequence comparison with contemporaneous isolates from ‘classical’ cases. Journal of General Virology 73:1581–1586
    [Google Scholar]
  26. Sheshberadaran S., Chen S. N., Norrby E. 1983; Monoclonal antibodies against five structural components of measles virus. I. Characterization of antigenic determinants on nine strains of measles virus. Virology 128:341–353
    [Google Scholar]
  27. Taylor M. J., Godfrey E., Baczko K., ter Meulen V., Wild T. F., Rima B. K. 1991; Identification of several different lineages of measles virus. Journal of General Virology 72:83–88
    [Google Scholar]
  28. Thormar H., Mehta P. D., Brown M. R. 1978; Comparison of wild type and subacute sclerosing panencephalitis strains of measles virus. Neurovirulence in ferrets and biological properties in cell cultures. Journal of Experimental Medicine 178:677–691
    [Google Scholar]
  29. van Binnendijk R. S., van der Heyden R. W. J., van Amerongen G., UytDeHaag F. G. C. M., Osterhaus A. D. M. E. 1994; Viral replication and development of specific immunity in macaques after infection with different measles virus strains. Journal of Infectious Diseases 170:443–448
    [Google Scholar]
  30. Vydelinghum S., Ilonen J., Salonen R., Marusyk R., Salmi A. 1989; Infection of human peripheral blood mononuclear cells with a temperature-sensitive mutant of measles virus. Journal of Virology 63:689–695
    [Google Scholar]
  31. Wong T. C., Hirano A. 1987; Structure and function of bicistronic RNA encoding the phosphoprotein and matrix protein of measles virus. Journal of Virology 61:584–589
    [Google Scholar]
  32. Yoshikawa Y., Tsuruoka H., Matsumoto M., Haga T., Shioda T., Shibuta H., Sato T. A., Yamanouchi K. 1990; Molecular analysis of structural protein genes of the Yamagata-1 strain of defective subacute sclerosing panencephalitis. II. Nucleotide sequence of cDNA corresponding to the P plus M dicistronic mRNA. Virus Genes 4:151–162
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-76-5-1173
Loading
/content/journal/jgv/10.1099/0022-1317-76-5-1173
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error