1887

Abstract

Replication of bovine papillomavirus type 1 (BPV-1) DNA has been shown to require two viral proteins known to interact in a molecular complex: E2, a transcription activator, and E1, another nuclear phosphoprotein, which binds to the replication origin and for which helicase/ATPase activities have previously been reported. Here we characterize the BPV-1 E1 ATPase activity. In contrast to Seo ., (, 90, 702–706, 1993), we were able to detect this activity in the absence of nucleic acid in partially purified preparations of either E1 protein or of E1–E2 protein complex. Measurements of specific activity and kinetic parameters gave similar values for preparations of various kinds. ATPase activity was quantitatively retained by immunoprecipitates obtained by using anti-E1 or, in the case of E1–E2 complex, anti-E2 antibodies. Significantly, preparations of bacterially expressed glutathione -transferase-E1 fusion protein exhibited levels of DNA-independent ATPase activity comparable to those of baculovirus-expressed E1. The presence of nucleic acids of various types, including stoichiometric amounts of a BPV-1 DNA fragment containing E1 and E2 binding sites, did not grossly affect E1 ATPase activity, the most notable effect being a 2-fold stimulation by unspecific ssDNA. Altogether, our results indicate that BPV-1 E1 possesses an intrinsic ATPase activity which does not depend on the presence of nucleic acid; moreover, they render unlikely any modulation of E1 ATPase activity due to binding either E2 protein or target DNA sequences, or as a result of protein phosphorylation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-5-1129
1995-05-01
2022-05-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/5/JV0760051129.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-5-1129&mimeType=html&fmt=ahah

References

  1. Baker T. A., Bertsch L. L., Bramhill D., Sekimizu K., Wahle E., Yung B., Kornberg A. 1988; Enzymatic mechanism of initiation of replication from the origin of the Escherichia coli chromosome. Cancer Cells 6:19–24
    [Google Scholar]
  2. Blitz I. L., Laimins L. A. 1991; The 68-kilodalton E1 protein of bovine papillomavirus is a DNA binding phosphoprotein which associates with the E2 transcriptional activator in vitro. Journal of Virology 65:649–656
    [Google Scholar]
  3. Bonne-Andréa C., Santucci S., Clertant P. 1995a; Bovine papillomavirus El protein can, by itself, efficiently drive multiple rounds of DNA synthesis in vitro. Journal of Virology 69: (in press)
    [Google Scholar]
  4. Bonne-Andréa C., Santucci S., Clertant P., & Tillier F. 1995b; Bovine papillomavirus E1 protein binds specifically polymerase α, but not replication protein A. Journal of Virology 69: (in press)
    [Google Scholar]
  5. Borowiec J. A., Dean F. B., Bullock P. A., Hurwitz J. 1990; Binding and unwinding – how T antigen engages the SV40 origin of replication. Cell 60:181–184
    [Google Scholar]
  6. Bradley M. K., Smith T. F., Lathrop R. H., Livingston D. M., Webster T. A. 1987; Consensus topography in the ATP binding site of the simian virus 40 and polyomavirus large tumor antigens. Proceedings of the National Academy of Sciences, USA 84:4026–4030
    [Google Scholar]
  7. Bramhill D., Kornberg A. 1988; Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52:743–755
    [Google Scholar]
  8. Bream G. L., Ohlmstede C.-A., Phelps W. C. 1993; Characterization of human papillomavirus type 11 E1 and E2 proteins expressed in insect cells. Journal of Virology 67:2655–2663
    [Google Scholar]
  9. Challberg M. D., Kelly T. J. 1989; Animal virus DNA replication. Annual Review of Biochemistry 58:671–717
    [Google Scholar]
  10. Chen C. Y., Howley P. M., Levinson A. D., Seburg P. H. 1982; The primary structure and genetic organisation of the bovine papillomavirus type 1 genome. Nature 299:529–534
    [Google Scholar]
  11. Cheng L., Workman J. L., Kingston R. E., Kelly T. J. 1992; Regulation of DNA replication in vitro by the transcriptional domain of GAL4-VP16. Proceedings of the National Academy of Sciences, USA 89:589–593
    [Google Scholar]
  12. Chiang C.-M., Ustav M., Stenlund A., Ho T. F., Broker T. R., Chow L. T. 1992; Viral El and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proceedings of the National Academy of Sciences, USA 89:5799–5803
    [Google Scholar]
  13. Clark R., Lane D. P., Than R. 1981; Use of monoclonal antibodies as probes of simian virus 40 T antigen ATPase activity. Journal of Biological Chemistry 254:11854–11858
    [Google Scholar]
  14. Clertant P., Seif I. 1984; A common function for polyomavirus large-T and papillomavirus E1 proteins?. Nature 311:276–279
    [Google Scholar]
  15. Clertant P., Gaudray P., May E., Cuzin F. 1984; The nucleotide-binding site detected by affinity labeling in the large T proteins of polyoma and SV40 viruses is distinct from their ATPase catalytic site. Journal of Biological Chemistry 259:15195–15203
    [Google Scholar]
  16. Dean F. B., Borowiec J. A., Eki T., Hurwitz J. 1992; The simian virus 40 T antigen double hexamer assembles around the DNA at the replication origin. Journal of Biological Chemistry 267:14129–14137
    [Google Scholar]
  17. DePamphilis M. L. 1993; How transcription factors regulate origins of DNA replication in eukaryotic cells. Trends in Cell Biology 3:161–167
    [Google Scholar]
  18. Gaudray P., Clertant P., Curzin F. 1980; ATP phosphohydrolase (ATPase) activity of polyoma virus T antigen. European Journal of Biochemistry 109:553–560
    [Google Scholar]
  19. Giachero D., Hager L. P. 1979; A poly(dT)-stimulated ATPase activity associated with simian virus 40 large T antigen. Journal of Biological Chemistry 254:8113–8116
    [Google Scholar]
  20. Harlow E., Lane D. 1989 Antibodies New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. He Z., Brinton B. T., Greenblatt J., Hassell J. A., Ingles C. J. 1993; The transactivator proteins VP16 and Gal4 bind replication factor A. Cell 73:1223–1232
    [Google Scholar]
  22. Holt S. E., Schuller G., Wilson V. G. 1994; DNA binding specificity of the bovine papillomavirus E1 protein is determined by sequences contained within an 18-base-pair inverted repeat element at the origin of replication. Journal of Virology 68:1094–1102
    [Google Scholar]
  23. Hughes F. J., Romanos M. A. 1993; El protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Research 21:5817–5823
    [Google Scholar]
  24. Jacob F., Brenner S., Cuzin F. 1963; On the regulation of DNA replication in bacteria. Cold Spring Harbor Symposia for Quantitative Biology 28:329–348
    [Google Scholar]
  25. Li R., Botchan M. R. 1993; The acidic transcriptional activation domains of VP 16 and p53 bind the cellular replication protein A and stimulate in vitro BPV1 DNA replication. Cell 73:1207–1221
    [Google Scholar]
  26. Li R., Botchan M. R. 1994; Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. Proceedings of the National Academy of Sciences, USA 91:7051–7055
    [Google Scholar]
  27. Li R., Knight J., Bream G., Stenlund A., Botchan M. 1989; Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. Genes & Development 3:510–526
    [Google Scholar]
  28. Lusky M., Fontane E. 1991; Formation of the complex of bovine papillomavirus E1 and E2 proteins is modulated by E2 phosphorylation and depends upon sequences within the carboxyl terminus of El. Proceedings of the National Academy of Sciences, USA 88:6363–6367
    [Google Scholar]
  29. Lusky M., Hurwitz J., Seo Y.-S. 1993; Cooperative assembly of the bovine papillomavirus E1 and E2 proteins on the replication origin requires an intact E2 binding site. Journal of Biological Chemistry 268:15795–15803
    [Google Scholar]
  30. Matson S. W., Kaiser-Rogers K. A. 1990; DNA helicases. Annual Review of Biochemistry 59:289–329
    [Google Scholar]
  31. McVey D., Brizuela L., Mohr I., Marshak D. R., Gluzman Y., Beach D. 1989; Phosphorylation of large tumour antigen by cdc2 stimulates SV40 DNA replication. Nature 341:503–507
    [Google Scholar]
  32. Mohr I. J., Stillman B., Gluzman Y. 1987; Regulation of SV40 DNA replication by phosphorylation of SV40 T antigen. EMBO Journal 6:153–160
    [Google Scholar]
  33. Mohr I. J., Gluzman Y., Fairman M. P., Strauss M., McVey D., Stillman B., Gerard R. D. 1989; Production of simian virus 40 large tumor antigen in bacteria: altered DNA-binding specificity and DNA-replication activity of underphosphorylated large tumor antigen. Proceedings of the National Academy of Sciences, USA 86:6479–6483
    [Google Scholar]
  34. Mohr I. J., Clark R., Sun S., Androphy E. J., MacPherson P., Botchan M. 1990; Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250:1694–1699
    [Google Scholar]
  35. Monini P., Grossmann S. R., Pepinsky B., Androphy E. J., Laimins L. A. 1991; Cooperative binding of the E2 protein of bovine papillomavirus to adjacent E2-responsive sequences. Journal of Virology 65:2124–2130
    [Google Scholar]
  36. Müller F., Seo Y.-S., Hurwitz J. 1994; Replication of bovine papillomavirus type 1 origin-containing DNA in crude extracts and with purified proteins. Journal of Biological Chemistry 269:17086–17094
    [Google Scholar]
  37. Penningroth S. M., Olehnik K., Cheung A. 1980; ATP formation from adenyl-5′-imido-diphosphate, a nonhydrolyzable analog. Journal of Biological Chemistry 255:9545–9548
    [Google Scholar]
  38. Santucci S., Androphy E. J., Bonne-Andréa C., Clertant P. 1990; Proteins encoded by the bovine papillomavirus E1 open reading frame: expression in heterologous systems and in virally-transformed cells. Journal of Virology 64:6027–6039
    [Google Scholar]
  39. Santucci S., Bonne-Andréa C., Clertant P. 1992; Bovine papillomavirus (BPV1) replication protein E1: associated ATPase and binding to the viral E2 transactivator. In DNA Replication: The Regulatory Mechanisms pp 399–416 Edited by Hughes P., Fanning E., Kohiyama M. Berlin: Springer Verlag;
    [Google Scholar]
  40. Sekimizu K., Bramhill D., Kornberg A. 1987; ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell 50:259–265
    [Google Scholar]
  41. SenGupta D., Borowiec J. A. 1992; Strand-specific recognition of a synthetic DNA replication fork by the SV40 large tumor antigen. Science 256:1656–1661
    [Google Scholar]
  42. Seo Y.-S., Hurwitz J. 1993; Isolation of helicase a. α DNA helicase from HeLa cells stimulated by a fork structure and singlestranded DNA-binding proteins. Journal of Biological Chemistry 268:12082–12095
    [Google Scholar]
  43. Seo Y.-S., Lee S.-H., Hurwitz J. 1991; Isolation of a DNA helicase from HeLa cells requiring the multisubunit human singlestranded DNA-binding protein for activity. Journal of Biological Chemistry 266:13161–13170
    [Google Scholar]
  44. Seo Y.-S., Müller F., Lusky M., Hurwitz J. 1993a; Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proceedings of the National Academy of Sciences, USA 90:702–706
    [Google Scholar]
  45. Seo Y.-S., Müller F., Lusky M., Gibbs E., Kim H.-Y., Phillips B., Hurwitz J. 1993b; Bovine papillomavirus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin. Proceedings of the National Academy of Sciences, USA 90:2865–2869
    [Google Scholar]
  46. Simmons D. T., Wun-Kim K., Young W. 1990; Identification of simian virus 40 T-antigen residues important for specific and nonspecific binding to DNA and for helicase activity. Journal of Virology 64:4858–4865
    [Google Scholar]
  47. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S’-transferase. Gene 67:31–40
    [Google Scholar]
  48. Stillman B. 1989; Initiation of eukaryotic DNA replication in vitro. Annual Review of Cell Biology 5:197–245
    [Google Scholar]
  49. Summers M. D., Smith G. E. 1987 A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures Texas Agricultural Experiment Station Bulletin no. 1555
    [Google Scholar]
  50. Sun S., Thorner L., Lentz M., MacPherson P., Botchan M. 1990; Identification of a 68-kilodalton nuclear ATP-binding phosphoprotein encoded by bovine papillomavirus type 1. Journal of Virology 64:5093–5105
    [Google Scholar]
  51. Ustav M., Stenlund A. 1991; Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO Journal 10:449–457
    [Google Scholar]
  52. Ustav M., Ustav E., Szymanski P., Stenlund A. 1991; Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO Journal 10:4321–1329
    [Google Scholar]
  53. Ustav E., Ustav M., Szymanski P., Stenlund A. 1993; The bovine papillomavirus origin of replication requires a binding site for the E2 transcriptional activator. Proceedings of the National Academy of Sciences, USA 90:898–902
    [Google Scholar]
  54. Waga S., Stillman B. 1994; Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212
    [Google Scholar]
  55. Wiekowski M., Schwartz M. W., Stahl H. 1988; Simian virus 40 large T antigen DNA helicase. Characterization of the ATPase-dependent DNA unwinding activity and its substrate requirements. Journal of Biological Chemistry 263:436–442
    [Google Scholar]
  56. Wilson V., Ludes-Meyers J. 1991; A bovine papillomavirus E1-related protein binding specifically to bovine papillomavirus DNA. Journal of Virology 65:5314–5322
    [Google Scholar]
  57. Yang L., Li R., Mohr I. J., Clark R., Botchan M. 1991; Activation of BPV-1 replication in vitro by the transcription factor E2. Nature 353:628–632
    [Google Scholar]
  58. Yang L., Mohr I., Fours E., Lim D. A., Nohaile M., Botchan M. 1993; The E1 protein of bovine papilloma virus type 1 is an ATP-dependent DNA helicase. Proceedings of the National Academy of Sciences, USA 90:5086–5090
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-5-1129
Loading
/content/journal/jgv/10.1099/0022-1317-76-5-1129
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error