1887

Abstract

Cytoplasmic DNA viruses encode a DNA-dependent RNA polymerase (DdRP) that is essential for transcription of viral genes. The amino acid sequences of the known largest subunits of DdRPs from different species contain highly conserved regions. Oligonucleotide primers, deduced from two conserved domains (RQP[T/S]LH and NADFDGDE) were used for detecting the corresponding gene of fish lymphocystis disease virus (FLCDV), a member of the family , which replicates in the cytoplasm of infected cells of flatfish. The gene coding for the largest subunit of the DdRP was identified using a PCR-derived probe. The screening of the complete RI gene library of the viral genome led to the identification of the gene locus of the largest subunit of the DdRP within the RI DNA fragment B (12.4 kbp, 0.034 to 0.165 map units). The nucleotide sequence of a part (8334 bp) of the RI DNA fragment B was determined and a large ORF on the lower strand (ATG = 5787; TAA = 2190) was detected which encodes a protein of 1199 amino acids. Comparison of the amino acid sequences of the largest subunits of the DdRP (RPO1) of FLCDV and iridescent virus (CIV) revealed a dramatic difference in their domain organization. Unlike the 1051 aa RPO1 of CIV, which lacks the C-terminal domain conserved in eukaryotic, eubacterial and other viral RNA polymerases, the 1199 aa RPO1 of FLCDV is fully collinear with its cellular and viral homologues. Despite this difference, comparative analysis of the amino acid sequences of viral and cellular RNA polymerases suggests a common origin for the largest RNA polymerase subunits of FLCDV and CIV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-5-1099
1995-05-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/5/JV0760051099.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-5-1099&mimeType=html&fmt=ahah

References

  1. Allison L. A., Moyle M., Shales M., Ingles C. J. 1985; Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42:599–610
    [Google Scholar]
  2. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. 1994; Issues in searching molecular sequence database. Nature Genetics 6:119–129
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. Journal of Molecular Biology 215:403–410
    [Google Scholar]
  4. Amegadzie B. Y., Holmes M. H., Cole N. B., Jones E. V., Earl P. L., Moss B. 1991; Identification, sequence, and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. Virology 180:88–98
    [Google Scholar]
  5. Bairoch A. 1991; A dictionary of sites and patterns in proteins. Nucleic Acids Research 19:2241–2245
    [Google Scholar]
  6. Baker M. E. 1991; Genealogy of regulation of human sex and adrenal function, prostaglandin action, snapdragon and petunia flower colors, antibiotics, and nitrogen fixation: functional diversity from two ancestral dehydrogenases. Steroids 56:354–360
    [Google Scholar]
  7. Baker M. E., Blasco R. 1992; Expansion of the mammalian 3-beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Letters 301:89–93
    [Google Scholar]
  8. Baroudy B. M., Moss B. 1980; Purification and characterization of DNA-dependent RNA polymerase from vaccinia. Journal of Biological Chemistry 255:4372–4380
    [Google Scholar]
  9. Broyles S. S., Moss B. 1986; Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147 kDa and 22 kDa subunits. Proceedings of the National Academy of Sciences, USA 83:3141–3145
    [Google Scholar]
  10. Cameron I. R. 1990; Identification and characterization of the gene encoding the major structural protein of insect iridescent virus type 22. Virology 178:35–42
    [Google Scholar]
  11. Cornelissen A. W., Evers R., Kock J. 1988; Structure and sequence of genes encoding subunits of eukaryotic RNA polymerases. Oxford Surveillance of Eukaryotic Genes 5:91–131
    [Google Scholar]
  12. Darai G., Anders K., Koch H. G., Delius H., Gelderblom H., Samalecos C., Flugel R. M. 1983; Analysis of the genome of fish lymphocystis disease virus isolated directly from epidermal tumors of pleuronectes. Virology 126:466–479
    [Google Scholar]
  13. Darai G., Delius H., Clarke J., Apfel H., Schnitzler P., Flugel R. M. 1985; Molecular cloning and physical mapping of the genome of fish lymphocystis disease virus. Virology 146:292–301
    [Google Scholar]
  14. Dingwall C., Laskey R. A. 1991; Nuclear targeting sequences- a consensus?. Trends in Biochemistry 16:478–181
    [Google Scholar]
  15. Felsenstein J. 1989; PHYLIP–Phytogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  16. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284
    [Google Scholar]
  17. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. (editors) 1991; Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplementum 2132–136
    [Google Scholar]
  18. Goorha R., Murti G., Granoff A., Tirey R. 1978; Macromolecular synthesis in cells infected by frog virus 3. VIII. The nucleus is a site of frog virus 3 DNA and RNA synthesis. Virology 84:32–55
    [Google Scholar]
  19. Jokerst R. S., Weeks J. R., Zehring W. A., Greenleaf A. L. 1989; Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. Molecular and General Genetics 215:266–275
    [Google Scholar]
  20. Jones E. V., Puckett C., Moss B. 1987; DNA-dependent RNA polymerase subunits encoded within the vaccinia virus genome. Journal of Virology 61:1765–1771
    [Google Scholar]
  21. Kelly D. C., Tinsley T. W. 1973; Ribonucleic acid polymerase activity associated with particles of iridescent virus type 2 and 6. Journal of Invertebrate Pathology 22:199–202
    [Google Scholar]
  22. Moss B. 1990; Regulation of vaccinia virus transcription. Annual Review of Biochemistry 59:661–688
    [Google Scholar]
  23. Nevins J. R., Joklik W. K. 1977; Isolation and properties of the vaccinia virus DNA-dependent RNA polymerase. Journal of Biological Chemistry 252:6930–6938
    [Google Scholar]
  24. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–492
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular and Biological Evolution 4:406–425
    [Google Scholar]
  26. Sanger F., Coulson A. R. 1978; The use of thin acrylamide gels for DNA sequencing. FEBS Letters 87:107–110
    [Google Scholar]
  27. Sanger G., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  28. Schnitzler P., Darai G. 1989; Characterization of the repetitive DNA elements in the genome of fish lymphocystis disease virus. Virology 172:32–41
    [Google Scholar]
  29. Schnitzler P., Darai G. 1993; Identification of the gene encoding the major capsid protein of fish lymphocystis disease virus. Journal of General Virology 74:2143–2150
    [Google Scholar]
  30. Schnitzler P., Delius H., Scholz J., Touray M., Orth E., Darai G. 1987; Identification and nucleotide sequence analysis of the repetitive DNA-element in the genome of fish lymphocystis disease virus. Virology 161:570–578
    [Google Scholar]
  31. Schnitzler P., Sonntag K.-C., Muller M., Janssen W., Bugert J., Koonin E. V., Darai G. 1994; Insect iridescent virus type 6 encodes a polypeptide related to the largest subunit of eukaryotic RNA polymerase II. Journal of General Virology 75:1557–1567
    [Google Scholar]
  32. Schuler G. D., Altschul S. F., Lipman D. J. 1991; A workbench for multiple alignment construction and analysis. Proteins: Structure, Function, and Genetics 9:180–190
    [Google Scholar]
  33. Sentenac A. 1985; Eukaryotic RNA polymerases. CRC Critical Reviews in Biochemistry 18:31–90
    [Google Scholar]
  34. Sharp P. A., Sudgen B., Sambrook J. 1973; Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using agarose-ethidium bromide electrophoresis. Biochemistry 12:3055–3063
    [Google Scholar]
  35. Stohwasser R., Raab K., Schnitzler P., Janssen W., Darai G. 1993; Identification of the gene encoding the major capsid protein of insect iridescent virus type 6 by polymerase chain reaction. Journal of General Virology 74:873–879
    [Google Scholar]
  36. Tabor S., Richardson C. C. 1987; DNA sequence analysis with modified bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences, USA 74:4767–4771
    [Google Scholar]
  37. Tajbakhsh S., Lee P. E., Watson D. C., Seligy V. L. 1990; Molecular cloning, characterization, and expression of the Tipula iridescent virus capsid gene. Journal of Virology 64:125–136
    [Google Scholar]
  38. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  39. Wagner H., Simon D., Werner E., Gelderblom H., Darai G., Flugel R. M. 1985; Methylation pattern of DNA of fish lymphocystis disease virus. Journal of Virology 53:1005–1007
    [Google Scholar]
  40. Williams T., Cory J. S. 1994; Proposals for a new classification of iridescent viruses. Journal of General Virology 75:1291–1301
    [Google Scholar]
  41. Woese C. R. 1987; Bacterial evolution. Microbiological Reviews 51:221–271
    [Google Scholar]
  42. Yanez R. J., Boursnell M., Nogal M. L., Yuste L., Vinuela E. 1993; African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases. Nucleic Acids Research 21:2423–2427
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-76-5-1099
Loading
/content/journal/jgv/10.1099/0022-1317-76-5-1099
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error