1887

Abstract

NS3 of hepatitis C virus (HCV) is a serine protease that carries out the proteolytic processing of the nonstructural proteins of the HCV polyprotein. Deletion analysis of the N terminus of NS2,3,4 fusion protein revealed that the N-terminal boundary of the active protease resides between amino acids 1050 and 1083. The processing patterns of internal deletion mutants of NS2,3,4 indicated that the C terminus of the enzymically active protease resides between amino acids 1115 and 1218. The N- and C-terminal boundaries of the protease were also confirmed by determining the -cleavage activity of internally deleted NS3,4. NS3 protease activity was inhibited by Cu but was slightly enhanced by Zn. This report provides a possible approach for development of antiviral agents based on protease inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-985
1995-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040985.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-985&mimeType=html&fmt=ahah

References

  1. Alter H. J., Purcell R. H., Holland P. V., Popper H. 1978; Transmissible agent in non-A, non-B hepatitis. Lancet i:459–463
    [Google Scholar]
  2. Alter H. J., Purcell R. H., Shih J. W., Melpolder J. C., Houghton M., Choo Q.-L., Kuo G. 1989; Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A non-B hepatitis. New England Journal of Medicine 321:1494–1500
    [Google Scholar]
  3. Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. 1993; Nonstructural protein 3 of the hepatitis C virus encodes a serine-type protease required for cleavage at the NS3/4 and NS4/5 junctions. Journal of Virology 67:3835–3844
    [Google Scholar]
  4. Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. 1994; Kinetic and structural analysis of hepatitis C virus polyprotein processing. Journal of Virology 68:5045–5055
    [Google Scholar]
  5. Bazan J. F., Fletterick R. J. 1989; Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171:637–639
    [Google Scholar]
  6. Bruix J., Calvet X., Costa J., Ventura M., Bruguera M., Castillo R., Barrera J. M., Ercilla G., Sanchez-Tapias J. M., Vall M., Bru C., Rodes J. 1989; Prevalence of antibodies to hepatitis C virus in Spanish patients with hepatocellular carcinoma and hepatic cirrhosis. Lancet ii:1004–1006
    [Google Scholar]
  7. Chambers T. J., Grakoui A., Rice C. M. 1991; Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 protease domain and NS2B are required for cleavages at dibasic sites. Journal of Virology 65:6042–6050
    [Google Scholar]
  8. Chiba J., Ohba H., Matsuura Y., Watanabe Y., Katayama T., Kikuchi S., Saito I., Miyamura T. 1991; Serodiagnosis of hepatitis C vims (HCV) infection with an HCV core protein molecularly expressed by a recombinant baculovirus. Proceedings of the National Academy of Sciences, USA 88:4641–4645
    [Google Scholar]
  9. Choo Q.-L., Richman K. H., Han J. H., Berger K., Lee C., Dong C., Gallegos C., Coit D., Medina-Selby A., Barr P. J., Weiner A. J., Bradley D. W., Kuo G., Houghton M. 1991; Genomic organization and diversity of the hepatitis C vims. Proceedings of the National Academy of Sciences, USA 88:2451–2455
    [Google Scholar]
  10. Colombo M., Kuo G., Choo Q.-L., Donato M. F., Ninno E. D., Tommasini M. A., Dioguardi N., Houghton M. 1989; Prevalence of antibodies to hepatitis C vims in Italian patients with hepatocellular carcinoma. Lancet ii:1006–1008
    [Google Scholar]
  11. Failla C., Tomei L., De Francesco R. 1994; Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. Journal of Virology 68:3753–3760
    [Google Scholar]
  12. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991; Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplementum 2223
    [Google Scholar]
  13. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M. 1989; N-Terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Research 17:3889–3897
    [Google Scholar]
  14. Grakoui A., McCourt D. W., Wychowcki C., Feinstone S. M., Rice C. K. 1993a; Characterization of the hepatitis C virus-encoded serine protease: determination of protease-dependent protein cleavage sites. Journal of Virology 67:2832–2843
    [Google Scholar]
  15. Grakoui A., Wychowcki C., Lin C., Feinstone S. M., Rice C. M. 1993b; Expression and identification of hepatitis C virus polyprotein cleavage products. Journal of Virology 67:1385–1395
    [Google Scholar]
  16. Harada S., Watanabe Y., Takeuchi K., Suzuki T., Katayama T., Takebe Y., Saito I., Miyamura T. 1991; Expression of processed core protein of hepatitis C virus in mammalian cells. Journal of Virology 65:3015–3021
    [Google Scholar]
  17. Hijikata K., Kato N., Ootsuyama Y., Nakagawa M., Shimotohno K. 1991; Gene mapping of the putative structural region of the hepatitis C vims genome by in vitro processing analysis. Proceedings of the National Academy of Sciences, USA 88:5547–5551
    [Google Scholar]
  18. Hijikata M., Mizushima H., Akagi T., Mori S., Kakiuchi N., Kato N., Tanaka T., Kimura K., Shimotohno K. 1993; Two distinct protease activities required for the processing of a putative nonstructural precursor protein of hepatitis C vims. Journal of Virology 67:4665–4675
    [Google Scholar]
  19. Hollinger F. B. 1990; Non-A, non-B hepatitis viruses. In Virology pp 2239–2273 Edited by Fields B. N. New York: Raven Press;
    [Google Scholar]
  20. Jang S. K., Wimmer E. 1990; Cap-independent translation of encephalomyocarditis vims RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kd RNA-binding protein. Genes & Development 4:1560–1572
    [Google Scholar]
  21. Jang S. K., Krausslich H.-G., Nicklin M. J. K., Duke G. M., Palmenberg A. C., Wimmer E. 1988; A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology 62:2636–2643
    [Google Scholar]
  22. Karlström A. R., Levine R. L. 1991; Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanism. Proceedings of the National Academy of Sciences, USA 88:5552–5556
    [Google Scholar]
  23. Kohara M., Tsukiyama-Kohara K., Maki N., Asano K., Yamaguchi K., Miki K., Tanaka S., Hattori N., Matsuura Y., Saito I., Miyamura T., Nomoto A. 1992; Expression and characterization of glycoprotein gp35 of hepatitis C virus using vaccinia virus. Journal of General Virology 73:2313–2318
    [Google Scholar]
  24. Kumar U., Cheng D., Thomas H., Monjardino J. 1992; Cloning and sequencing of the structural region and expression of putative core gene of hepatitis C virus from a British case of chronic sporadic hepatitis. Journal of General Virology 73:1521–1525
    [Google Scholar]
  25. Kuo G., Choo Q.-L., Alter H. L., Gitnick G. I., Redeker A. G., Purcell R. H., Miyamura T., Dienstag J. L., Alter M. J., Stevens C. E., Tegtmeier G. E., Bonino F., Colombo M., Lee W. S., Kuo C., Berger K., Shuster J. R., Overby L. R., Bradley D. W., Houghton M. 1989; An assay for circulating antibodies to a major etiologic vims of human non-A non-B hepatitis. Science 244:362–364
    [Google Scholar]
  26. Matsuura Y., Harada S., Suzuki R., Watanabe Y., Inoue Y., Saito I., Miyamura T. 1992; Expression of processed envelope protein of hepatitis C virus in mammalian and insect cells. Journal of Virology 66:1425–1431
    [Google Scholar]
  27. Miller R. H., Purcell R. H. 1990; Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proceedings of the National Academy of Sciences, USA 87:2057–2061
    [Google Scholar]
  28. Mizushima H., Hijikata M., Tanji Y., Kimura K., Shimotohno K. 1994; Analysis of N-terminal processing of hepatitis C virus nonstructural protein 2. Journal of Virology 68:2731–2734
    [Google Scholar]
  29. Ralston R., Thudium K., Berger K., Kuo C., Gervase B., Hall J., Selby M., Kuo G., Houghton M., Choo Q.-L. 1993; Characterization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia viruses. Journal of Virology 67:6753–6761
    [Google Scholar]
  30. Saito I., Miyamura T., Ohbayashi A., Harada H., Katayama T., Kikuchi S., Watanabe Y., Koi S., Onji M., Ohta Y., Choo Q.-L., Houghton M., Kuo G. 1990; Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proceedings of the National Academy of Sciences, USA 87:6547–6549
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Selby M. J., Choo Q.-L., Berger K., Kuo G., Glazer E., Eckart M., Lee C., Chien D., Kuo C., Houghton M. 1993; Expression, identification and subcellular localization of the proteins encoded by the hepatitis C viral genome. Journal of General Virology 74:1103–1113
    [Google Scholar]
  33. Shimizu Y. K., Iwamoto A., Hijikata M., Purcell R. H., Yoshikura H. 1992; Evidence for in vitro replication of hepatitis C virus genome in a human T-cell line. Proceedings of the National Academy of Sciences, USA 89:5477–5481
    [Google Scholar]
  34. Spaete R. R., Alexander D., Rugroden M. E., Choo Q. L., Berger K., Crawford K., Kuo C., Leng S., Lee C., Ralston R., Thudium K., Tung J. W., Kuo G., Houghton M. 1992; Characterization of the hepatitis E2/NS1 gene product expressed in mammalian cells. Virology 188:819–830
    [Google Scholar]
  35. Tabor E., Garety R. J., Drucker J. A., Seeff L. B., Hoofnagle J. F., Jackson D. R., April M., Barker L. F., Pineda-Tamondong G. 1978; Transmission of non-A, non-B hepatitis from man to chimpanzee. Lancet i:463–466
    [Google Scholar]
  36. Tomei L., Failla C., Santolini E., De Francesco R., La Monica N. 1993; NS3 is a serine protease required for processing of hepatitis C virus polyprotein. Journal of Virology 61:4017–4026
    [Google Scholar]
  37. Tsukiyama-Kohara K., Kohara M., Yamaguchi K., Maki N., Toyoshima A., Miki K., Tanaka S., Hattori N., Nomoto A. 1991; A second group of hepatitis C viruses. Virus Genes 5:243–254
    [Google Scholar]
  38. Tsukiyama-Kohara K., Iiauka N., Kohara M., Nomoto A. 1992; Internal ribosome entry site within hepatitis C virus RNA. Journal of Virology 66:1476–1483
    [Google Scholar]
  39. Wang C., Sarnow P., Siddiqui A. 1993; Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. Journal of Virology 67:3338–3344
    [Google Scholar]
  40. Wengler G., Czaya G., Farber P., Hegemann J. H. 1991; In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids. Journal of General Virology 72:851–858
    [Google Scholar]
  41. Wiskerchen M., Collett M. S. 1991; Pestivirus gene expression: protein p80 of bovine viral diarrhea virus is proteinase involved in polyprotein processing. Virology 184:341–350
    [Google Scholar]
  42. Yoo B. J., Spaete R. R., Geballe A. P., Selby M., Houghton M., Han J. H. 1992; 5′ End-dependent translation initiation of hepatitis C viral RNA and the presence of putative positive and negative translational control elements within the 5′ untranslated region. Virology 191:889–899
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-985
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-985
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error